两个思路,
第一个,所求子序列,必然以某一个元素结尾,求出所有元素结尾的最长子序列,挑一个最大的,就可以了。辅助数组存的是对应下标的元素的最长值。
第二个,辅助数组存的是对应长度的最小值,可以反证法证明,长度越大的最小元素值,大于长度比他小的最小元素值。因此,该辅助数组是单调递增的,可以二分,提高效率。
public class LIS {
private int[] a;
private int[] b;
public LIS(int[] a){
assert(a != null);
assert(a.length>0);
this.a = a;
b = new int[a.length];
}
/**
* The max subsequence must be ended with one(or several) of the array,
* To find the max subsequence, is to find all the max subsequences ending with each array member, and choose
* the max value in them. That is the result.
* @return
*/
public int find(){
//the max counts of subsequence equals the b.length.
int max = 1;
/*for the a[i], to generate the max sub ending with a[i], which item appeared before
should the a[i] follow?
so we need an array to record all the happened counts.
b[n] stands the min ending value in all the possible max subsequences
happened before whose length are all (n-1).
why is ONLY the min ending value saved? because for the next following item, the ending value
smaller means the new item will easier to follow to generate a longer subsequence.
b has 2 characteristic.
1) the index is the max length.
2) b is sorted well naturally.
*/
b[0] = a[0];
//find the max sub each one by one, ending with a[i]
for(int i=1; i<a.length-1; i++){
//find the right place in array b, make the subsequence ending with a[i] has the max length.
int position = search(a[i], b, 0, max-1);
//if exceed the max, add it directly.
if(position == (max-1)){
b[max] = a[i];
max++;
}
if(a[i] < b[position+1]){
b[position+1] = a[i];
}
}
// print(b, 0, max-1);
return max;
}
public int find2(){
for(int i=0; i<a.length; i++){
int max = 1;
for(int j=0; j<i; j++){
if(a[j] < a[i]){
int temp = b[j] + 1;
if(temp > max){
max = temp;
}
}
}
b[i] = max;
}
int result = 1;
for(int k=0; k<b.length; k++){
if(b[k] > result){
result = b[k];
}
}
return result;
}
/**
* find the right place in array b, make the subsequence ending with a[i] has the max length.
* @param value
* @param b
* @return
*/
public int search(int value, int[] b, int left, int right){
assert(b != null);
if(value <= b[left]){
return -1;
}
if(value > b[right]){
return right;
}
return binarySearch(value, b, left, right);
}
/**
* Find the closest item in array b which is less than the value. and return its index.
* @param value
* @return
*/
private int binarySearch(int value, int[] b, int left, int right){
//why always return "right"?
if(left > right){
return right;
}
int index = (left+right)/2;
int mid = b[index];
if(mid == value){
return index-1;
}else if(value > mid){
return binarySearch(value, b, index+1, right);
}else{
return binarySearch(value, b, left, index-1);
}
}
public void print(int[] b, int left, int right){
for(int i=left; i<=right; i++){
System.out.print(b[i] + " ");
}
System.out.print("\r");
}
/**
* @param args
*/
public static void main(String[] args) {
int[] a = {7,2,4,8,3,5,1,9,6};
LIS seq = new LIS(a);
int max = seq.find();
// int max = seq.find2();
System.out.println(max);
}
}