PKU1821 Fence

本文介绍了一种使用单调队列优化动态规划的方法来解决最优涂漆分配问题。具体任务为:给定一定数量的木板和工人,每个工人负责涂漆连续的一段木板,并且不能超过自己的最大涂漆限制,目标是最大化总收入。文章提供了详细的算法实现步骤及样例输入输出。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description
A team of K(1<=K<=100) workers should paint a fence which contains N(1<=N<=16000) planks numbered from 1 to N from left to right. Each worker i(1<=i<=K) should sit in front of the plank Si and he may paint only a compact interval (this means that the planks from the interval should be consecutive). This interval should contain the Si plank. Also a worker should not paint more than Li planks and for each painted plank he should receive Pi(1<=Pi<=10000). A plank should be painted by no more than one worker. All the numbers Si should be distinct.
Being the team’s leader you want to determine for each worker the interval that he should paint, knowing that the total income should be maximal. The total income represents the sum of the workers personal income.
Write a program that determines the total maximal income obtained by the K workers.

Input
The input contains:
N K
L1 P1 S1
L2 P2 S2
...
LK PK SK

Semnification
N-the number of the planks; K-the number of the workers
Li-the maximal number of planks that can be painted by worker i
Pi-the sum received by worker i for a painted plank
Si-the plank in front of which sits the worker i

Output
The output contains a single integer, the total maximal income.

Sample Input
8 4
3 2 2
3 2 3
3 3 5
1 1 7

Sample Output
17

Hint
Explanation of the sample:
the worker 1 paints the interval [1, 2];
the worker 2 paints the interval [3, 4];
the worker 3 paints the interval [5, 7];
the worker 4 does not paint any plank

Source
Romania OI 2002

思路
单调队列优化dp。
fi,j表示第i个工人刷了第j块木板能得到的最大工钱。

fi,j=max(fi1,j,fi,j1,fi1,k+(kj)Pi)(jLi<=k<=j)
这样做显然会超时。
再用单调队列优(luan)化(gao)就AC了。

代码

#include <cstdio>
#include <algorithm>

const int maxk=100;
const int maxn=16000;

struct data
{
    int l,p,s;

    bool operator <(const data &other) const
    {
        return s<other.s;
    }
};

int f[maxk+10][maxn+10];
int n,k;
data d[maxk+10];
int q[maxn+10],head,tail;

int main()
{
    scanf("%d%d",&n,&k);
    for(int i=1; i<=k; i++)
    {
        scanf("%d%d%d",&d[i].l,&d[i].p,&d[i].s);
    }
    std::sort(d+1,d+k+1);
    for(int i=1; i<=k; i++)
    {
        head=0;
        tail=1;
        q[1]=0;
        for(int j=1; j<d[i].s; j++)
        {
            f[i][j]=std::max(f[i][j-1],f[i-1][j]);
            while((head!=tail)&&(f[i-1][q[tail]]-q[tail]*d[i].p<f[i-1][j]-j*d[i].p))
            {
                tail--;
            }
            tail++;
            q[tail]=j;
        }
        for(int j=std::max(1,d[i].s); j<=n; j++)
        {
            f[i][j]=std::max(f[i][j-1],f[i-1][j]);
            if(d[i].s<=j-d[i].l)
            {
                continue;
            }
            while((head!=tail)&&(q[head]<j-d[i].l))
            {
                head++;
            }
            f[i][j]=std::max(f[i][j],f[i-1][q[head]]-q[head]*d[i].p+j*d[i].p);
        }
    }
    printf("%d\n",f[k][n]);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值