Time Limit: 1000MS | Memory Limit: 30000K | |
Total Submissions: 3604 | Accepted: 1094 |
Description
Being the team's leader you want to determine for each worker the interval that he should paint, knowing that the total income should be maximal. The total income represents the sum of the workers personal income.
Write a program that determines the total maximal income obtained by the K workers.
Input
Input
N K
L1 P1 S1
L2 P2 S2
...
LK PK SK
Semnification
N -the number of the planks; K ? the number of the workers
Li -the maximal number of planks that can be painted by worker i
Pi -the sum received by worker i for a painted plank
Si -the plank in front of which sits the worker i
Output
Sample Input
8 4 3 2 2 3 2 3 3 3 5 1 1 7
Sample Output
17
Hint
the worker 1 paints the interval [1, 2];
the worker 2 paints the interval [3, 4];
the worker 3 paints the interval [5, 7];
the worker 4 does not paint any plank
题意:长度为n的墙,k个粉刷匠。第 i 个粉刷匠在 si ,他最多可以刷包含 si 的长度为 li 的区间,他刷单位长度获得钱 pi 。求k个粉刷匠最多能赚多少钱?
题解:首先将k个人按所在位置排序 。dp[ i ][ j ] 表示前i个人,处理了前j 的墙的最大收益(处理表示:可以刷,可以不刷)。转移就是:
dp[ i ][ j ] =max( dp[ i ][ j-1 ] , dp[ i -1][ j ] );
dp[ i ][ j ]=max( dp[ i ][ j ] , dp[ i-1 ][ k ]+w(k+1,j,i ) ), j-l[ i ]<=k<s[ i ] 。 w(k+1,j,i)表示第i个人刷 k+1到 j 的收益。
w(k+1,j,i)=p[ i ]*j-p[ i ]*k;
所以第二个转移可以写成:
dp[ i ][ j ]=max(dp[ i ][ j ] ,max(dp[ i-1][ k ]-p[ i ]*k )+p[ i ]*j );
因为:j-l[ i ]<=k<s[ i ]
随着 j 的增大,k的下界在不断增大,上界不变。所以对于max(dp[ i -1][ k ]-p[ i ]*k),我们可以用单调队列维护。这样转移可以降到O(1),复杂度O(n*k)。
代码如下:
#include<stdio.h>
#include<algorithm>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<vector>
#include<iostream>
#include<string.h>
#include<string>
#include<math.h>
#include<stdlib.h>
#define inff 0x3fffffff
#define eps 1e-8
#define nn 21000
#define mod 1000000007
typedef long long LL;
const LL inf64=LL(inff)*inff;
using namespace std;
int n,k;
int l[nn],p[nn],s[nn];
int dp[110][nn];
int que[nn];
int l1,r1;
void add(int id,int i)
{
while(r1>l1)
{
if(dp[i-1][que[r1-1]]-p[i]*que[r1-1]<=dp[i-1][id]-p[i]*id)
{
r1--;
}
else
{
break;
}
}
que[r1++]=id;
}
void dele(int id)
{
while(l1<r1)
{
if(que[l1]<id)
{
l1++;
}
else
break;
}
}
int main()
{
int i,j;
while(scanf("%d%d",&n,&k)!=EOF)
{
for(i=1;i<=k;i++)
{
scanf("%d%d%d",&l[i],&p[i],&s[i]);
}
for(i=1;i<=k;i++)
{
for(j=i+1;j<=k;j++)
{
if(s[j]<s[i])
{
swap(l[i],l[j]);
swap(s[i],s[j]);
swap(p[i],p[j]);
}
}
}
for(i=0;i<=n;i++)
dp[0][i]=0;
int ix;
for(i=1;i<=k;i++)
{
l1=r1=0;
add(0,i);
for(j=1;j<=n;j++)
{
dp[i][j]=max(dp[i][j-1],dp[i-1][j]);
if(j>=s[i])
{
ix=max(0,j-l[i]);
if(ix<s[i])
{
dele(ix);
dp[i][j]=max(dp[i][j],dp[i-1][que[l1]]-p[i]*que[l1]+p[i]*j);
}
}
if(j<s[i])
add(j,i);
}
}
printf("%d\n",dp[k][n]);
}
return 0;
}