注:本文为 “线性代数 · 秩—零化度定理” 相关合辑。
英文引文,机翻未校。
中文引文,略作重排。
如有内容异常,请看原文。
Rank and Nullity
秩与零化度
Rank and Nullity are two essential concepts related to matrices in Linear Algebra. The nullity of a matrix is determined by the difference between the order and rank of the matrix. The rank of a matrix is the number of linearly independent row or column vectors of a matrix. If
n
n
n is the order of the square matrix
A
A
A, then the nullity of
A
A
A is given by
n
–
r
n – r
n–r. Thus, the rank of a matrix is the number of linearly independent or non-zero vectors of a matrix, whereas nullity is the number of zero vectors of a matrix.
在线性代数中,秩(Rank)与零化度(Nullity)是与矩阵相关的两个核心概念。矩阵的零化度由其阶数与秩的差值确定,矩阵的秩则是矩阵中线性无关的行向量或列向量的数量。若
n
n
n 为方阵
A
A
A 的阶数,则
A
A
A 的零化度可表示为
n
–
r
n – r
n–r(其中
r
r
r 为矩阵的秩)。因此,矩阵的秩是矩阵中线性无关向量(或非零向量)的数量,而零化度是矩阵中零向量的数量。
The rank of matrix
A
A
A is denoted as
ρ
(
A
)
\rho(A)
ρ(A), and the nullity is denoted as
N
(
A
)
N(A)
N(A). Evidently, if the rank of the matrix is equal to the order of the matrix, then the nullity of the matrix is zero.
矩阵
A
A
A 的秩记为
ρ
(
A
)
\rho(A)
ρ(A),零化度记为
N
(
A
)
N(A)
N(A)。显然,若矩阵的秩等于其阶数,则该矩阵的零化度为 0。
Rank and Nullity Theorem for Matrix
矩阵的秩-零化度定理
The rank and nullity theorem for matrices is one of the important theorems in linear algebra and a requirement to derive many more results. Before discussing the theorem, we must know the concept of null spaces.
矩阵的秩-零化度定理是线性代数中的重要定理之一,也是推导更多结论的基础。在讨论该定理之前,我们需要先了解零空间(Null Space)的概念。
Nullspace
零空间
Let
A
A
A be a real matrix of order
m
×
n
m \times n
m×n, the set of the solutions associated with the system of homogeneous equation
A
X
=
0
\boldsymbol{AX = 0}
AX=0 is said to be the null space of
A
A
A.
设
A
A
A 为
m
×
n
m \times n
m×n 阶实矩阵,齐次方程组
A
X
=
0
\boldsymbol{AX = 0}
AX=0 的所有解构成的集合,称为矩阵
A
A
A 的零空间。
Nullspace of
A
A
A =
{
x
∈
R
n
∣
A
x
=
0
}
\{ x \in \boldsymbol{R}^n \mid Ax = 0 \}
{x∈Rn∣Ax=0}. Then the nullity of
A
A
A will be the dimension of the Nullspace of
A
A
A.
A
A
A 的零空间可表示为
{
x
∈
R
n
∣
A
x
=
0
}
\{ x \in \boldsymbol{R}^n \mid Ax = 0 \}
{x∈Rn∣Ax=0},而
A
A
A 的零化度就是其零空间的维数。
If the rank of
A
A
A is
r
r
r, there are
r
r
r leading variables in row-reduced echelon form of
A
A
A and
n
–
r
n – r
n–r free variables, which are solutions of the homogeneous system of equation
A
X
=
0
AX = 0
AX=0. Thus,
n
–
r
n – r
n–r is the dimension of the null space of
A
A
A. This fact motivates the rank and nullity theorem for matrices.
若
A
A
A 的秩为
r
r
r,则其行简化阶梯形矩阵中含有
r
r
r 个主变量(leading variable)和
n
–
r
n – r
n–r 个自由变量(free variable),这些自由变量对应齐次方程组
A
X
=
0
AX = 0
AX=0 的解。因此,
A
A
A 的零空间维数为
n
–
r
n – r
n–r,这一结论为矩阵秩-零化度定理的提出提供了依据。
Row-reduced Echelon Form of
A
A
A
矩阵
A
A
A 的行简化阶梯形

Rank and Nullity Theorem
秩-零化度定理
If
A
A
A is a matrix of order
m
×
n
m \times n
m×n, then Rank of
A
A
A + Nullity of
A
A
A = Number of columns in
A
A
A =
n
n
n
若
A
A
A 为
m
×
n
m \times n
m×n 阶矩阵,则
A
A
A 的秩 +
A
A
A 的零化度 =
A
A
A 的列数 =
n
n
n
Proof: We already have a result, “Let
A
A
A be a matrix of order
m
×
n
m \times n
m×n, then the rank of
A
A
A is equal to the number of leading columns of row-reduced echelon form of
A
A
A.”
证明:已知结论“设
A
A
A 为
m
×
n
m \times n
m×n 阶矩阵,则
A
A
A 的秩等于其行简化阶梯形矩阵中主列(leading column)的数量”。
Let
r
r
r be the rank of
A
A
A, and then we have two cases as follows:
设
r
r
r 为
A
A
A 的秩,分以下两种情况讨论:
Case I: If
A
A
A is a non-singular matrix, then
r
=
n
r = n
r=n as the row-reduced echelon form will have no zero rows. Then,
x
=
0
x = 0
x=0 will be the trivial solution of
A
X
=
0
AX = 0
AX=0; that is, the nullity of
A
A
A will be zero.
情况一: 若
A
A
A 为非奇异矩阵(可逆矩阵),则其行简化阶梯形矩阵不含零行,因此
r
=
n
r = n
r=n。此时,齐次方程组
A
X
=
0
AX = 0
AX=0 仅有平凡解
x
=
0
x = 0
x=0,即
A
A
A 的零化度为 0。
Hence, rank of
A
A
A + nullity of
A
A
A =
n
+
0
=
n
n + 0 = n
n+0=n = Number of columns in
A
A
A
因此,
A
A
A 的秩 +
A
A
A 的零化度 =
n
+
0
=
n
n + 0 = n
n+0=n =
A
A
A 的列数
Case II: If
A
A
A is singular, then rank of
A
A
A will be less than the order of
A
A
A, that is,
r
<
n
r < n
r<n. Therefore, there are
r
r
r non-zero rows or
r
r
r leading columns of the row-reduced echelon form. Consequently, there will be
n
–
r
n – r
n–r zero rows, which contributes to the solution of
A
X
=
0
AX = 0
AX=0, which means the nullity of
A
A
A is
n
–
r
n – r
n–r.
情况二: 若
A
A
A 为奇异矩阵(不可逆矩阵),则
A
A
A 的秩小于其阶数,即
r
<
n
r < n
r<n。此时,其行简化阶梯形矩阵含有
r
r
r 个非零行(或
r
r
r 个主列),因此会有
n
–
r
n – r
n–r 个零行,这些零行对应齐次方程组
A
X
=
0
AX = 0
AX=0 的解,即
A
A
A 的零化度为
n
–
r
n – r
n–r。
Hence, rank of
A
A
A + nullity of
A
A
A =
r
+
n
–
r
=
n
r + n – r = n
r+n–r=n = Number of columns in
A
A
A.
因此,
A
A
A 的秩 +
A
A
A 的零化度 =
r
+
(
n
–
r
)
=
n
r + (n – r) = n
r+(n–r)=n =
A
A
A 的列数。
In both cases, we get the same result which proves our claim.
两种情况均得到相同结论,定理得证。
Important Facts on Rank and Nullity
关于秩与零化度的重要结论
-
The rank of an invertible matrix is equal to the order of the matrix, and its nullity is equal to zero.
可逆矩阵的秩等于其阶数,零化度为 0。 -
Rank is the number of leading columns or non-zero row vectors of the row-reduced echelon form of the given matrix, and the number of zero rows is the nullity.
矩阵的秩等于其行简化阶梯形矩阵中主列或非零行向量的数量,零化度等于其行简化阶梯形矩阵中零行的数量。 -
The nullity of a matrix is the dimension of the null space of A A A, also called the kernel of A A A.
矩阵的零化度是其零空间的维数,零空间也称为核(kernel)。 -
If A A A is an invertible matrix, then null space ( A A A) = { 0 } \{0\} {0}.
若 A A A 为可逆矩阵,则其零空间 null space ( A A A) = { 0 } \{0\} {0}(仅含零向量)。 -
The rank of a matrix is the number of non-zero eigenvalues of the matrix, and the number of zero eigenvalues determines the nullity of the matrix.
矩阵的秩等于其非零特征值的数量,零特征值的数量决定了矩阵的零化度。
Solved Examples on Rank and Nullity
秩与零化度的求解示例
Example 1
示例 1
Verify the rank and nullity theorem for the matrix
验证下述矩阵是否满足秩-零化度定理:
A = [ 1 1 2 3 3 4 − 1 2 − 1 − 2 5 4 ] A=\begin{bmatrix}1 & 1 & 2 & 3 \\3 & 4 & -1 & 2 \\-1 & -2 & 5 & 4 \\\end{bmatrix} A= 13−114−22−15324
Solution
解答
Given the matrix:
已知矩阵:
A = [ 1 1 2 3 3 4 − 1 2 − 1 − 2 5 4 ] A=\begin{bmatrix}1 & 1 & 2 & 3 \\3 & 4 & -1 & 2 \\-1 & -2 & 5 & 4 \\\end{bmatrix} A= 13−114−22−15324
We reduce
A
A
A to its row-reduced echelon form through elementary row and column operations:
通过初等行变换与列变换,将
A
A
A 化为行简化阶梯形:
-
Apply R 2 → R 2 + ( − 3 ) R 1 R_2 \to R_2 + (-3)R_1 R2→R2+(−3)R1 and R 3 → R 3 + R 1 R_3 \to R_3 + R_1 R3→R3+R1
执行行变换 R 2 → R 2 + ( − 3 ) R 1 R_2 \to R_2 + (-3)R_1 R2→R2+(−3)R1 和 R 3 → R 3 + R 1 R_3 \to R_3 + R_1 R3→R3+R1:
A ∼ [ 1 1 2 3 0 1 − 7 − 7 0 − 1 7 7 ] A\sim\begin{bmatrix}1 & 1 & 2 & 3 \\0 & 1 & -7 & -7 \\0 & -1 & 7 & 7 \\\end{bmatrix} A∼ 10011−12−773−77 -
Apply R 3 → R 3 + R 2 R_3 \to R_3 + R_2 R3→R3+R2
执行行变换 R 3 → R 3 + R 2 R_3 \to R_3 + R_2 R3→R3+R2:
A ∼ [ 1 1 2 3 0 1 − 7 − 7 0 0 0 0 ] A\sim\begin{bmatrix}1 & 1 & 2 & 3 \\0 & 1 & -7 & -7 \\0 & 0 & 0 & 0 \\\end{bmatrix} A∼ 1001102−703−70 -
Apply C 2 → C 2 + C 1 C_2 \to C_2 + C_1 C2→C2+C1, C 3 → C 3 + ( − 2 ) C 1 C_3 \to C_3 + (-2)C_1 C3→C3+(−2)C1 and C 4 → C 4 + ( − 3 ) C 1 C_4 \to C_4 + (-3)C_1 C4→C4+(−3)C1
执行列变换 C 2 → C 2 + C 1 C_2 \to C_2 + C_1 C2→C2+C1、 C 3 → C 3 + ( − 2 ) C 1 C_3 \to C_3 + (-2)C_1 C3→C3+(−2)C1 和 C 4 → C 4 + ( − 3 ) C 1 C_4 \to C_4 + (-3)C_1 C4→C4+(−3)C1:
A ∼ [ 1 0 0 0 0 1 − 7 − 7 0 0 0 0 ] A\sim\begin{bmatrix}1 & 0 & 0 & 0 \\0 & 1 & -7 & -7 \\0 & 0 & 0 & 0 \\\end{bmatrix} A∼ 1000100−700−70 -
Apply C 3 → C 3 + 7 C 2 C_3 \to C_3 + 7C_2 C3→C3+7C2 and C 4 → C 4 + 7 C 2 C_4 \to C_4 + 7C_2 C4→C4+7C2
执行列变换 C 3 → C 3 + 7 C 2 C_3 \to C_3 + 7C_2 C3→C3+7C2 和 C 4 → C 4 + 7 C 2 C_4 \to C_4 + 7C_2 C4→C4+7C2:
A ∼ [ 1 0 0 0 0 1 0 0 0 0 0 0 ] A\sim\begin{bmatrix}1 & 0 & 0 & 0 \\0 & 1 & 0 & 0 \\0 & 0 & 0 & 0 \\\end{bmatrix} A∼ 100010000000
Clearly,
rank
(
A
)
=
2
\text{rank}(A) = 2
rank(A)=2 and
nullity
(
A
)
=
2
\text{nullity}(A) = 2
nullity(A)=2.
显然,
rank
(
A
)
=
2
\text{rank}(A) = 2
rank(A)=2,
nullity
(
A
)
=
2
\text{nullity}(A) = 2
nullity(A)=2。
Therefore,
rank
(
A
)
+
nullity
(
A
)
=
2
+
2
=
4
\text{rank}(A) + \text{nullity}(A) = 2 + 2 = 4
rank(A)+nullity(A)=2+2=4, which equals the number of columns of
A
A
A.
因此,
rank
(
A
)
+
nullity
(
A
)
=
2
+
2
=
4
\text{rank}(A) + \text{nullity}(A) = 2 + 2 = 4
rank(A)+nullity(A)=2+2=4,等于矩阵
A
A
A 的列数。
Example 2
示例 2
Find the nullity of the matrix
求下述矩阵的零化度:
A = [ 1 3 4 3 3 9 12 9 1 3 4 1 ] A=\begin{bmatrix}1 & 3 & 4 & 3 \\3 & 9 & 12 & 9 \\1 & 3 & 4 & 1 \\\end{bmatrix} A= 1313934124391
Solution
解答
Given the matrix:
已知矩阵:
A = [ 1 3 4 3 3 9 12 9 1 3 4 1 ] A=\begin{bmatrix}1 & 3 & 4 & 3 \\3 & 9 & 12 & 9 \\1 & 3 & 4 & 1 \\\end{bmatrix} A= 1313934124391
We reduce
A
A
A to its row-reduced echelon form through elementary operations:
通过初等变换,将
A
A
A 化为行简化阶梯形:
-
Apply elementary row operations R 21 ( − 3 ) R_{21}(-3) R21(−3) (i.e., R 2 = R 2 − 3 R 1 R_2 = R_2 - 3R_1 R2=R2−3R1) and R 31 ( − 1 ) R_{31}(-1) R31(−1) (i.e., R 3 = R 3 − R 1 R_3 = R_3 - R_1 R3=R3−R1)
执行初等行变换 R 21 ( − 3 ) R_{21}(-3) R21(−3)(即 R 2 = R 2 − 3 R 1 R_2 = R_2 - 3R_1 R2=R2−3R1)和 R 31 ( − 1 ) R_{31}(-1) R31(−1)(即 R 3 = R 3 − R 1 R_3 = R_3 - R_1 R3=R3−R1):
A ∼ [ 1 3 4 3 0 0 0 0 0 0 0 − 2 ] A\sim \begin{bmatrix}1 & 3 & 4 & 3 \\ 0 & 0 & 0 & 0 \\0 & 0 & 0 & -2 \\\end{bmatrix} A∼ 10030040030−2 -
Apply elementary row operation R 3 ( − 1 2 ) R_3(-\frac{1}{2}) R3(−21) (i.e., R 3 = − 1 2 R 3 R_3 = -\frac{1}{2}R_3 R3=−21R3)
执行初等行变换 R 3 ( − 1 2 ) R_3(-\frac{1}{2}) R3(−21)(即 R 3 = − 1 2 R 3 R_3 = -\frac{1}{2}R_3 R3=−21R3):
A ∼ [ 1 3 4 3 0 0 0 0 0 0 0 1 ] A\sim \begin{bmatrix}1 & 3 & 4 & 3 \\ 0 & 0 & 0 & 0 \\0 & 0 & 0 & 1 \\\end{bmatrix} A∼ 100300400301 -
Apply elementary column operation C 24 C_{24} C24 (i.e., swap Column 2 and Column 4)
执行初等列变换 C 24 C_{24} C24(即交换第 2 列与第 4 列):
A ∼ [ 1 3 4 3 0 1 0 0 0 0 0 0 ] A\sim \begin{bmatrix}1 & 3 & 4 & 3 \\ 0 & 1 & 0 & 0 \\0 & 0 & 0 & 0 \\\end{bmatrix} A∼ 100310400300 -
Apply elementary column operations C 21 ( − 3 ) C_{21}(-3) C21(−3) (i.e., C 2 = C 2 − 3 C 1 C_2 = C_2 - 3C_1 C2=C2−3C1), C 31 ( − 4 ) C_{31}(-4) C31(−4) (i.e., C 3 = C 3 − 4 C 1 C_3 = C_3 - 4C_1 C3=C3−4C1) and C 41 ( − 3 ) C_{41}(-3) C41(−3) (i.e., C 4 = C 4 − 3 C 1 C_4 = C_4 - 3C_1 C4=C4−3C1)
执行初等列变换 C 21 ( − 3 ) C_{21}(-3) C21(−3)(即 C 2 = C 2 − 3 C 1 C_2 = C_2 - 3C_1 C2=C2−3C1)、 C 31 ( − 4 ) C_{31}(-4) C31(−4)(即 C 3 = C 3 − 4 C 1 C_3 = C_3 - 4C_1 C3=C3−4C1)和 C 41 ( − 3 ) C_{41}(-3) C41(−3)(即 C 4 = C 4 − 3 C 1 C_4 = C_4 - 3C_1 C4=C4−3C1):
A ∼ [ 1 0 0 0 0 1 0 0 0 0 0 0 ] A\sim \begin{bmatrix}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\0 & 0 & 0 & 0 \\\end{bmatrix} A∼ 100010000000
Thus,
Rank
(
A
)
=
2
\text{Rank}(A) = 2
Rank(A)=2, and
Nullity
(
A
)
=
Number of columns
−
Rank
=
4
−
2
=
2
\text{Nullity}(A) = \text{Number of columns} - \text{Rank} = 4 - 2 = 2
Nullity(A)=Number of columns−Rank=4−2=2.
因此,
Rank
(
A
)
=
2
\text{Rank}(A) = 2
Rank(A)=2,
Nullity
(
A
)
=
列数
−
秩
=
4
−
2
=
2
\text{Nullity}(A) = \text{列数} - \text{秩} = 4 - 2 = 2
Nullity(A)=列数−秩=4−2=2。
Frequently Asked Questions on Rank and Nullity
关于秩与零化度的常见问题
Q1: What is the rank of the matrix?
问题 1:矩阵的秩是什么?
The number of linearly independent row or column vectors of a matrix is the rank of the matrix.
矩阵中线性无关的行向量或列向量的数量,称为矩阵的秩。
Q2: What is the nullity of the matrix?
问题 2:矩阵的零化度是什么?
The dimension of the nullspace or kernel of the given matrix is the nullity of the matrix.
给定矩阵的零空间(或核)的维数,称为矩阵的零化度。
Q3: What is the rank and nullity theorem for matrices?
问题 3:矩阵的秩-零化度定理是什么?
For any matrix
A
A
A of order
m
×
n
m \times n
m×n,
rank
(
A
)
+
nullity
(
A
)
=
n
\text{rank}(A) + \text{nullity}(A) = n
rank(A)+nullity(A)=n, where
n
n
n is the number of columns in
A
A
A.
对于任意
m
×
n
m \times n
m×n 阶矩阵
A
A
A,均有
rank
(
A
)
+
nullity
(
A
)
=
n
\text{rank}(A) + \text{nullity}(A) = n
rank(A)+nullity(A)=n(其中
n
n
n 为
A
A
A 的列数)。
Q4: What is the nullity of an invertible matrix?
问题 4:可逆矩阵的零化度是多少?
The nullity of an invertible matrix is zero.
可逆矩阵的零化度为 0。
The Rank-Nullity Theorem
秩-零化度定理
节选自 普渡大学数学系 2010 年春季学期的微分方程课程(MA26200)
Differential Equations and Linear Algebra by Stephen Goode and Scott A. Annin, Third Edition.Chapter 4.9
In Section 4.3, we defined the null space of a real
m
×
n
m \times n
m×n matrix
A
A
A to be the set of all real solutions to the associated homogeneous linear system
A
x
=
0
Ax = 0
Ax=0. Thus,
在第 4.3 节中,我们定义了实数
m
×
n
m \times n
m×n 矩阵
A
A
A 的零空间为与齐次线性方程组
A
x
=
0
Ax = 0
Ax=0 相关的所有实数解的集合。因此,
nullspace
(
A
)
=
{
x
∈
R
n
:
A
x
=
0
}
.
\text{nullspace}(A) = \{ x \in \mathbb{R}^n : Ax = 0 \}.
nullspace(A)={x∈Rn:Ax=0}.
The dimension of nullspace(
A
A
A) is referred to as the nullity of
A
A
A and is denoted
nullity
(
A
)
\text{nullity}(A)
nullity(A).
零空间 (
A
A
A) 的维度被称为
A
A
A 的零化度,并记作
nullity
(
A
)
\text{nullity}(A)
nullity(A)。
In order to find
nullity
(
A
)
\text{nullity}(A)
nullity(A), we need to determine a basis for
nullspace
(
A
)
\text{nullspace}(A)
nullspace(A). Recall that if
rank
(
A
)
=
r
\text{rank}(A) = r
rank(A)=r, then any row-echelon form of
A
A
A contains
r
r
r leading ones, which correspond to the bound variables in the linear system. Thus, there are
n
−
r
n - r
n−r columns without leading ones, which correspond to free variables in the solution of the system
A
x
=
0
Ax = 0
Ax=0. Hence, there are
n
−
r
n - r
n−r free variables in the solution of the system
A
x
=
0
Ax = 0
Ax=0. We might therefore suspect that
nullity
(
A
)
=
n
−
r
\text{nullity}(A) = n - r
nullity(A)=n−r. Our next theorem, often referred to as the Rank-Nullity Theorem, establishes that this is indeed the case.
为了找到
nullity
(
A
)
\text{nullity}(A)
nullity(A),我们需要确定
nullspace
(
A
)
\text{nullspace}(A)
nullspace(A) 的一个基。回忆一下,如果
rank
(
A
)
=
r
\text{rank}(A) = r
rank(A)=r,那么
A
A
A 的任何行阶梯形式都包含
r
r
r 个主元,这些主元对应于线性系统中的绑定变量。因此,有
n
−
r
n - r
n−r 列没有主元,这些对应于系统
A
x
=
0
Ax = 0
Ax=0 解中的自由变量。因此,在系统
A
x
=
0
Ax = 0
Ax=0 的解中有
n
−
r
n - r
n−r 个自由变量。我们因此可能怀疑
nullity
(
A
)
=
n
−
r
\text{nullity}(A) = n - r
nullity(A)=n−r。我们的下一个定理,通常称为秩-零化度定理,确立了这确实是这种情况。
Theorem 4.9.1 (Rank-Nullity Theorem)
定理 4.9.1(秩-零化度定理)
For any
m
×
n
m \times n
m×n matrix
A
A
A,
对于任何
m
×
n
m \times n
m×n 矩阵
A
A
A,
rank ( A ) + nullity ( A ) = n . \text{rank}(A) + \text{nullity}(A) = n. rank(A)+nullity(A)=n.
(4.9.1)
Proof If
rank
(
A
)
=
n
\text{rank}(A) = n
rank(A)=n, then by the Invertible Matrix Theorem, the only solution to
A
x
=
0
Ax = 0
Ax=0 is the trivial solution
x
=
0
x = 0
x=0. Hence, in this case,
nullspace
(
A
)
=
{
0
}
\text{nullspace}(A) = \{0\}
nullspace(A)={0}, so
nullity
(
A
)
=
0
\text{nullity}(A) = 0
nullity(A)=0 and Equation (4.9.1) holds.
证明 如果
rank
(
A
)
=
n
\text{rank}(A) = n
rank(A)=n,那么根据可逆矩阵定理,
A
x
=
0
Ax = 0
Ax=0 的唯一解是平凡解
x
=
0
x = 0
x=0。因此,在这种情况下,
nullspace
(
A
)
=
{
0
}
\text{nullspace}(A) = \{0\}
nullspace(A)={0},所以
nullity
(
A
)
=
0
\text{nullity}(A) = 0
nullity(A)=0,方程 (4.9.1) 成立。
Now suppose
rank
(
A
)
=
r
<
n
\text{rank}(A) = r < n
rank(A)=r<n. In this case, there are
n
−
r
>
0
n - r > 0
n−r>0 free variables in the solution to
A
x
=
0
Ax = 0
Ax=0. Let
t
1
,
t
2
,
…
,
t
n
−
r
t_1, t_2, \ldots, t_{n-r}
t1,t2,…,tn−r denote these free variables (chosen as those variables not attached to a leading one in any row-echelon form of
A
A
A), and let
x
1
,
x
2
,
…
,
x
n
−
r
x_1, x_2, \ldots, x_{n-r}
x1,x2,…,xn−r denote the solutions obtained by sequentially setting each free variable to 1 and the remaining free variables to zero. Note that
{
x
1
,
x
2
,
…
,
x
n
−
r
}
\{x_1, x_2, \ldots, x_{n-r}\}
{x1,x2,…,xn−r} is linearly independent. Moreover, every solution to
A
x
=
0
Ax = 0
Ax=0 is a linear combination of
x
1
,
x
2
,
…
,
x
n
−
r
x_1, x_2, \ldots, x_{n-r}
x1,x2,…,xn−r:
现在假设
rank
(
A
)
=
r
<
n
\text{rank}(A) = r < n
rank(A)=r<n。在这种情况下,
A
x
=
0
Ax = 0
Ax=0 的解中有
n
−
r
>
0
n - r > 0
n−r>0 个自由变量。令
t
1
,
t
2
,
…
,
t
n
−
r
t_1, t_2, \ldots, t_{n-r}
t1,t2,…,tn−r 表示这些自由变量(选择为在
A
A
A 的任何行阶梯形式中不与主元相连的变量),并令
x
1
,
x
2
,
…
,
x
n
−
r
x_1, x_2, \ldots, x_{n-r}
x1,x2,…,xn−r 表示通过依次将每个自由变量设为 1 并将其余自由变量设为 0 而得到的解。注意
{
x
1
,
x
2
,
…
,
x
n
−
r
}
\{x_1, x_2, \ldots, x_{n-r}\}
{x1,x2,…,xn−r} 是线性无关的。此外,
A
x
=
0
Ax = 0
Ax=0 的每个解都是
x
1
,
x
2
,
…
,
x
n
−
r
x_1, x_2, \ldots, x_{n-r}
x1,x2,…,xn−r 的线性组合:
x = t 1 x 1 + t 2 x 2 + ⋯ + t n − r x n − r , x = t_1x_1 + t_2x_2 + \cdots + t_{n-r}x_{n-r}, x=t1x1+t2x2+⋯+tn−rxn−r,
which shows that
{
x
1
,
x
2
,
…
,
x
n
−
r
}
\{x_1, x_2, \ldots, x_{n-r}\}
{x1,x2,…,xn−r} spans
nullspace
(
A
)
\text{nullspace}(A)
nullspace(A). Thus,
{
x
1
,
x
2
,
…
,
x
n
−
r
}
\{x_1, x_2, \ldots, x_{n-r}\}
{x1,x2,…,xn−r} is a basis for
nullspace
(
A
)
\text{nullspace}(A)
nullspace(A), and
nullity
(
A
)
=
n
−
r
\text{nullity}(A) = n - r
nullity(A)=n−r.
这表明
{
x
1
,
x
2
,
…
,
x
n
−
r
}
\{x_1, x_2, \ldots, x_{n-r}\}
{x1,x2,…,xn−r} 跨越了
nullspace
(
A
)
\text{nullspace}(A)
nullspace(A)。因此,
{
x
1
,
x
2
,
…
,
x
n
−
r
}
\{x_1, x_2, \ldots, x_{n-r}\}
{x1,x2,…,xn−r} 是
nullspace
(
A
)
\text{nullspace}(A)
nullspace(A) 的一个基,并且
nullity
(
A
)
=
n
−
r
\text{nullity}(A) = n - r
nullity(A)=n−r。
Example 4.9.2
例 4.9.2
If
如果
A = [ 1 1 2 3 3 4 − 1 2 − 1 − 2 5 4 ] , A = \begin{bmatrix} 1 & 1 & 2 & 3 \\ 3 & 4 & -1 & 2 \\ -1 & -2 & 5 & 4 \end{bmatrix}, A= 13−114−22−15324 ,
find a basis for
nullspace
(
A
)
\text{nullspace}(A)
nullspace(A) and verify Theorem 4.9.1.
找到
nullspace
(
A
)
\text{nullspace}(A)
nullspace(A) 的一个基,并验证定理 4.9.1。
Solution We must find all solutions to
A
x
=
0
Ax = 0
Ax=0. Reducing the augmented matrix of this system yields
解 我们必须找到
A
x
=
0
Ax = 0
Ax=0 的所有解。将该系统的增广矩阵化简得到
A # ∼ [ 1 1 2 3 0 0 1 − 7 − 7 0 0 − 1 7 7 0 ] ∼ [ 1 1 2 3 0 0 1 − 7 − 7 0 0 0 0 0 0 ] . A^{\#} \sim \begin{bmatrix} 1 & 1 & 2 & 3 & 0 \\ 0 & 1 & -7 & -7 & 0 \\ 0 & -1 & 7 & 7 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 2 & 3 & 0 \\ 0 & 1 & -7 & -7 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}. A#∼ 10011−12−773−77000 ∼ 1001102−703−70000 .
- A 12 ( − 3 ) A_{12}(-3) A12(−3), A 13 ( 1 ) A_{13}(1) A13(1) 2. A 23 ( 1 ) A_{23}(1) A23(1)
Consequently, there are two free variables,
x
3
=
t
1
x_3 = t_1
x3=t1 and
x
4
=
t
2
x_4 = t_2
x4=t2, so that
因此,有两个自由变量,
x
3
=
t
1
x_3 = t_1
x3=t1 和
x
4
=
t
2
x_4 = t_2
x4=t2,使得
x 2 = 7 t 1 + 7 t 2 , x 1 = − 9 t 1 − 10 t 2 . x_2 = 7t_1 + 7t_2, \quad x_1 = -9t_1 - 10t_2. x2=7t1+7t2,x1=−9t1−10t2.
Hence,
因此,
n u l l s p a c e ( A ) = { ( − 9 t 1 − 10 t 2 , 7 t 1 + 7 t 2 , t 1 , t 2 ) : t 1 , t 2 ∈ } = { t 1 ( − 9 , 7 , 1 , 0 ) + t 2 ( − 10 , 7 , 0 , 1 ) : t 1 , t 2 ∈ } = s p a n { ( − 9 , 7 , 1 , 0 ) , ( − 10 , 7 , 0 , 1 ) } . \begin{array}{lll} {\rm{nullspace}}(A) & = \{ ( - 9{t_1} - 10{t_2},7{t_1} + 7{t_2},{t_1},{t_2}):{t_1},{t_2} \in \} \\ & = \{ {t_1}( - 9,7,1,0) + {t_2}( - 10,7,0,1):{t_1},{t_2} \in \} \\ & = {\rm{span}}\{ ( - 9,7,1,0),( - 10,7,0,1)\} . \end{array} nullspace(A)={(−9t1−10t2,7t1+7t2,t1,t2):t1,t2∈}={t1(−9,7,1,0)+t2(−10,7,0,1):t1,t2∈}=span{(−9,7,1,0),(−10,7,0,1)}.
Since the two vectors in this spanning set are not proportional, they are linearly independent. Consequently, a basis for
nullspace
(
A
)
\text{nullspace}(A)
nullspace(A) is
{
(
−
9
,
7
,
1
,
0
)
,
(
−
10
,
7
,
0
,
1
)
}
\{(-9, 7, 1, 0), (-10, 7, 0, 1)\}
{(−9,7,1,0),(−10,7,0,1)}, so that
nullity
(
A
)
=
2
\text{nullity}(A) = 2
nullity(A)=2. In this problem,
A
A
A is a
3
×
4
3 \times 4
3×4 matrix, and so, in the Rank-Nullity Theorem,
n
=
4
n = 4
n=4. Further, from the foregoing row-echelon form of the augmented matrix of the system
A
x
=
0
Ax = 0
Ax=0, we see that
rank
(
A
)
=
2
\text{rank}(A) = 2
rank(A)=2. Hence,
由于该生成集中的两个向量不成比例,它们是线性无关的。因此,
nullspace
(
A
)
\text{nullspace}(A)
nullspace(A) 的一个基是
{
(
−
9
,
7
,
1
,
0
)
,
(
−
10
,
7
,
0
,
1
)
}
\{(-9, 7, 1, 0), (-10, 7, 0, 1)\}
{(−9,7,1,0),(−10,7,0,1)},所以
nullity
(
A
)
=
2
\text{nullity}(A) = 2
nullity(A)=2。在这个问题中,
A
A
A 是一个
3
×
4
3 \times 4
3×4 矩阵,因此,在秩-零化度定理中,
n
=
4
n = 4
n=4。此外,从系统
A
x
=
0
Ax = 0
Ax=0 的增广矩阵的行阶梯形式中,我们看到
rank
(
A
)
=
2
\text{rank}(A) = 2
rank(A)=2。因此,
rank
(
A
)
+
nullity
(
A
)
=
2
+
2
=
4
=
n
,
\text{rank}(A) + \text{nullity}(A) = 2 + 2 = 4 = n,
rank(A)+nullity(A)=2+2=4=n,
and the Rank-Nullity Theorem is verified.
并且秩-零化度定理得到了验证。
秩-零化度定理(Rank-Nullity Theorem)
MatNoble 编辑于 2020-02-09 08:16
引言
线性代数(高等代数) 与 微积分(数学分析) 存在差异,线性代数是一门持续发展的学科。其在实际应用中产生的新问题会反哺教学,而教学的进步又能进一步推动实际应用的发展。
秩-零化度定理(Rank-Nullity Theorem)
如图 1 所示,线性变换 T T T 从有限维向量空间 V \mathcal{V} V(定义域)映射到有限维向量空间 W \mathcal{W} W(值域),记为 T : V → W T:\mathcal{V}\to\mathcal{W} T:V→W。

图 1 线性变换
T
:
V
→
W
T:\mathcal{V}\to\mathcal{W}
T:V→W 的示意图
在该映射关系中,存在两个重要的子空间,分别定义如下:
1. 核空间(Kernel Space)
向量空间
V
\mathcal{V}
V 中所有经线性变换
T
T
T 映射后得到零元素的元素所构成的集合,称为
T
T
T 的核(子)空间,记为
ker
(
T
)
\ker (T)
ker(T)。
核空间的维数(dimension)称为零化度(nullity),记为
dim
ker
(
T
)
\dim \ker (T)
dimker(T),用于度量核空间的规模。
2. 值域(Range)
向量空间
V
\mathcal{V}
V 中所有元素经线性变换
T
T
T 映射后所构成的集合,称为
T
T
T 的值域,记为
r
a
n
(
T
)
{\rm ran} (T)
ran(T) 或
R
(
T
)
R(T)
R(T)。
值域的维数(dimension)称为秩(rank),记为
r
a
n
k
T
{\rm rank}\, T
rankT 或
dim
r
a
n
(
T
)
\dim {\rm ran} (T)
dimran(T)。
秩-零化度定理的表述
线性变换
T
:
V
→
W
T:\mathcal{V}\to\mathcal{W}
T:V→W 的定义域
V
\mathcal{V}
V 的维数,等于其核空间
ker
(
T
)
\ker (T)
ker(T) 的维数与值域
r
a
n
(
T
)
{\rm ran} (T)
ran(T) 的维数之和,即:
dim
V
=
dim
ker
(
T
)
+
r
a
n
k
T
\dim \mathcal{V} = \dim \ker (T) + {\rm rank}\, T
dimV=dimker(T)+rankT
秩-零化度定理的证明
秩-零化度定理可从矩阵角度与线性变换角度分别证明,两种证明思路各有侧重,共同支撑定理的严谨性。
1. 矩阵角度的证明
线性变换可通过矩阵具象化表示,因此可借助矩阵的零空间与列空间证明定理。
步骤 1:设定基本条件
设线性变换 T : V → W T: \mathcal{V} \to \mathcal{W} T:V→W 由 m × n m \times n m×n 阶矩阵 A A A 表示,其中:
- n = dim V n = \dim \mathcal{V} n=dimV(定义域 V \mathcal{V} V 的维数);
- m = dim W m = \dim \mathcal{W} m=dimW(值域 W \mathcal{W} W 的维数);
- 矩阵 A A A 的零空间 N ( A ) N(A) N(A) 对应线性变换 T T T 的核空间 ker ( T ) \ker (T) ker(T);
- 矩阵 A A A 的列空间 C ( A ) C(A) C(A) 对应线性变换 T T T 的值域 r a n ( T ) {\rm ran} (T) ran(T)。
需证明的结论转化为:
n
=
dim
N
(
A
)
+
r
a
n
k
A
n = \dim N(A) + {\rm rank} A
n=dimN(A)+rankA
步骤 2:矩阵的初等行变换化简
对矩阵
A
A
A 进行初等行变换,可将其化为如下分块矩阵形式:
R
=
[
E
r
F
0
0
]
R = \begin{bmatrix} E_r & F \\ 0 & 0 \end{bmatrix}
R=[Er0F0]
其中:
- E r E_r Er 为 r r r 阶单位矩阵;
- F F F 为 r × ( n − r ) r \times (n-r) r×(n−r) 阶矩阵;
- 矩阵 R R R 的秩为 r r r,即 r a n k R = r {\rm rank} R = r rankR=r。
由于初等行变换不改变矩阵的秩与零空间,因此有:
- r a n k A = r a n k R = r {\rm rank} A = {\rm rank} R = r rankA=rankR=r;
- N ( A ) = N ( R ) N(A) = N(R) N(A)=N(R)(矩阵 A A A 与 R R R 的零空间相同)。
步骤 3:构造零空间矩阵并验证
观察分块矩阵
R
R
R,构造其
n
×
(
n
−
r
)
n \times (n-r)
n×(n−r) 阶零空间矩阵
P
P
P:
P
=
[
−
F
E
n
−
r
]
P = \begin{bmatrix} -F \\ E_{n-r} \end{bmatrix}
P=[−FEn−r]
其中
E
n
−
r
E_{n-r}
En−r 为
(
n
−
r
)
(n-r)
(n−r) 阶单位矩阵。
验证
P
P
P 满足零空间定义(即
R
P
=
0
RP = 0
RP=0):
R
P
=
[
E
r
F
0
0
]
[
−
F
E
n
−
r
]
=
[
−
F
+
F
0
]
=
0
RP = \begin{bmatrix} E_r & F \\ 0 & 0 \end{bmatrix}\begin{bmatrix} -F \\ E_{n-r} \end{bmatrix} = \begin{bmatrix} -F + F \\ 0 \end{bmatrix} = 0
RP=[Er0F0][−FEn−r]=[−F+F0]=0
步骤 4:证明 C ( P ) = N ( R ) C(P) = N(R) C(P)=N(R)
- 首先,矩阵 P P P 的秩 r a n k P = n − r {\rm rank}\, P = n-r rankP=n−r,说明其列向量线性无关;
- 其次,任取
x
∈
N
(
R
)
x \in N(R)
x∈N(R)(即
R
x
=
0
Rx = 0
Rx=0),将
x
x
x 按分块形式表示为
x
=
[
x
1
x
2
]
x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}
x=[x1x2],其中
x
1
x_1
x1 为
r
r
r 维向量,
x
2
x_2
x2 为
(
n
−
r
)
(n-r)
(n−r) 维向量。代入
R
x
=
0
Rx = 0
Rx=0 得:
R x = [ E r F 0 0 ] [ x 1 x 2 ] = [ x 1 + F x 2 0 ] = 0 Rx = \begin{bmatrix} E_r & F \\ 0 & 0 \end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 + Fx_2 \\ 0 \end{bmatrix} = 0 Rx=[Er0F0][x1x2]=[x1+Fx20]=0
由此推出 x 1 = − F x 2 x_1 = -Fx_2 x1=−Fx2,进而有:
x = [ x 1 x 2 ] = [ − F x 2 x 2 ] = [ − F E n − r ] x 2 = P x 2 x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -Fx_2 \\ x_2 \end{bmatrix} = \begin{bmatrix} -F \\ E_{n-r} \end{bmatrix}x_2 = Px_2 x=[x1x2]=[−Fx2x2]=[−FEn−r]x2=Px2
即 x x x 可由 P P P 的列向量线性表出。
综上,
C
(
P
)
=
N
(
R
)
C(P) = N(R)
C(P)=N(R),因此
dim
N
(
A
)
=
dim
N
(
R
)
=
r
a
n
k
P
=
n
−
r
\dim N(A) = \dim N(R) = {\rm rank} P = n-r
dimN(A)=dimN(R)=rankP=n−r。代入
r
a
n
k
A
=
r
{\rm rank} A = r
rankA=r,得:
n
=
dim
N
(
A
)
+
r
a
n
k
A
n = \dim N(A) + {\rm rank} A
n=dimN(A)+rankA
矩阵角度的证明完成。
2. 线性变换角度的证明
线性变换的核心是“保持线性运算”,可通过基底的映射关系证明定理。
步骤 1:设定基本条件与基底扩充
设向量空间
V
\mathcal{V}
V 的维数
dim
V
=
n
\dim \mathcal{V} = n
dimV=n,线性变换
T
T
T 的核空间维数
dim
ker
(
T
)
=
p
\dim \ker(T) = p
dimker(T)=p(显然
p
≤
n
p \leq n
p≤n)。
取
ker
(
T
)
\ker(T)
ker(T) 的一组基底
{
u
1
,
u
2
,
…
,
u
p
}
\{u_1, u_2, \dots, u_p\}
{u1,u2,…,up},将其扩充为
V
\mathcal{V}
V 的一组基底:
{
u
1
,
u
2
,
…
,
u
p
,
w
1
,
w
2
,
…
,
w
r
}
\{u_1, u_2, \dots, u_p, w_1, w_2, \dots, w_r\}
{u1,u2,…,up,w1,w2,…,wr}
其中
n
=
p
+
r
n = p + r
n=p+r。需证明的结论转化为:
r
a
n
k
T
=
r
{\rm rank}\, T = r
rankT=r

步骤 2:分析任意向量的像
对
V
\mathcal{V}
V 中任意向量
v
v
v,由基底的线性表示性质,可将其表示为:
v
=
a
1
u
1
+
a
2
u
2
+
⋯
+
a
p
u
p
+
b
1
w
1
+
b
2
w
2
+
⋯
+
b
r
w
r
v = a_1u_1 + a_2u_2 + \cdots + a_pu_p + b_1w_1 + b_2w_2 + \cdots + b_rw_r
v=a1u1+a2u2+⋯+apup+b1w1+b2w2+⋯+brwr
其中
a
1
,
…
,
a
p
,
b
1
,
…
,
b
r
a_1, \dots, a_p, b_1, \dots, b_r
a1,…,ap,b1,…,br 为常数。
对
v
v
v 施加线性变换
T
T
T,根据线性变换的性质(可加性、齐次性),其像
T
(
v
)
T(v)
T(v) 满足:
T
(
v
)
=
T
(
a
1
u
1
+
⋯
+
a
p
u
p
+
b
1
w
1
+
⋯
+
b
r
w
r
)
=
a
1
T
(
u
1
)
+
⋯
+
a
p
T
(
u
p
)
+
b
1
T
(
w
1
)
+
⋯
+
b
r
T
(
w
r
)
\begin{aligned} T(v) &= T\left(a_1u_1 + \cdots + a_pu_p + b_1w_1 + \cdots + b_rw_r\right) \\ &= a_1T(u_1) + \cdots + a_pT(u_p) + b_1T(w_1) + \cdots + b_rT(w_r) \end{aligned}
T(v)=T(a1u1+⋯+apup+b1w1+⋯+brwr)=a1T(u1)+⋯+apT(up)+b1T(w1)+⋯+brT(wr)
由于
u
1
,
…
,
u
p
∈
ker
(
T
)
u_1, \dots, u_p \in \ker(T)
u1,…,up∈ker(T),故
T
(
u
1
)
=
⋯
=
T
(
u
p
)
=
0
T(u_1) = \cdots = T(u_p) = 0
T(u1)=⋯=T(up)=0,因此:
T
(
v
)
=
b
1
T
(
w
1
)
+
b
2
T
(
w
2
)
+
⋯
+
b
r
T
(
w
r
)
T(v) = b_1T(w_1) + b_2T(w_2) + \cdots + b_rT(w_r)
T(v)=b1T(w1)+b2T(w2)+⋯+brT(wr)
这表明
T
(
v
)
T(v)
T(v) 可由
{
T
(
w
1
)
,
…
,
T
(
w
r
)
}
\{T(w_1), \dots, T(w_r)\}
{T(w1),…,T(wr)} 线性表示,即
r
a
n
T
{\rm ran}\, T
ranT 可由该向量组张成。
步骤 3:证明基底的线性无关性
只需证明 { T ( w 1 ) , T ( w 2 ) , … , T ( w r ) } \{T(w_1), T(w_2), \dots, T(w_r)\} {T(w1),T(w2),…,T(wr)} 线性无关,即可确认其为 r a n T {\rm ran}\, T ranT 的一组基底(维数为 r r r)。
假设存在常数
c
1
,
c
2
,
…
,
c
r
c_1, c_2, \dots, c_r
c1,c2,…,cr,使得:
c
1
T
(
w
1
)
+
c
2
T
(
w
2
)
+
⋯
+
c
r
T
(
w
r
)
=
0
c_1T(w_1) + c_2T(w_2) + \cdots + c_rT(w_r) = 0
c1T(w1)+c2T(w2)+⋯+crT(wr)=0
根据线性变换的性质,上式可改写为:
T
(
c
1
w
1
+
c
2
w
2
+
⋯
+
c
r
w
r
)
=
0
T\left(c_1w_1 + c_2w_2 + \cdots + c_rw_r\right) = 0
T(c1w1+c2w2+⋯+crwr)=0
这表明
c
1
w
1
+
⋯
+
c
r
w
r
∈
ker
(
T
)
c_1w_1 + \cdots + c_rw_r \in \ker(T)
c1w1+⋯+crwr∈ker(T)。由于
{
u
1
,
…
,
u
p
}
\{u_1, \dots, u_p\}
{u1,…,up} 是
ker
(
T
)
\ker(T)
ker(T) 的基底,故存在常数
d
1
,
…
,
d
p
d_1, \dots, d_p
d1,…,dp,使得:
c
1
w
1
+
⋯
+
c
r
w
r
=
d
1
u
1
+
⋯
+
d
p
u
p
c_1w_1 + \cdots + c_rw_r = d_1u_1 + \cdots + d_pu_p
c1w1+⋯+crwr=d1u1+⋯+dpup
整理得:
d
1
u
1
+
⋯
+
d
p
u
p
−
c
1
w
1
−
⋯
−
c
r
w
r
=
0
d_1u_1 + \cdots + d_pu_p - c_1w_1 - \cdots - c_rw_r = 0
d1u1+⋯+dpup−c1w1−⋯−crwr=0
由于
{
u
1
,
…
,
u
p
,
w
1
,
…
,
w
r
}
\{u_1, \dots, u_p, w_1, \dots, w_r\}
{u1,…,up,w1,…,wr} 是
V
\mathcal{V}
V 的基底(线性无关),故所有系数均为零,即
c
1
=
⋯
=
c
r
=
0
c_1 = \cdots = c_r = 0
c1=⋯=cr=0。
因此,
{
T
(
w
1
)
,
…
,
T
(
w
r
)
}
\{T(w_1), \dots, T(w_r)\}
{T(w1),…,T(wr)} 线性无关,即
r
a
n
k
T
=
r
{\rm rank}\, T = r
rankT=r。结合
n
=
p
+
r
n = p + r
n=p+r 与
p
=
dim
ker
(
T
)
p = \dim \ker(T)
p=dimker(T),得:
dim
V
=
dim
ker
(
T
)
+
r
a
n
k
T
\dim \mathcal{V} = \dim \ker(T) + {\rm rank}\, T
dimV=dimker(T)+rankT
线性变换角度的证明完成。
秩-零化度定理的推论
基于秩-零化度定理,可推导出关于线性变换“非零核”与“非满射”的重要结论,也可转化为矩阵语言表述。
推论 1:定义域维数大于值域维数时,存在非零核
若
dim
V
>
dim
W
\dim \mathcal{V} > \dim \mathcal{W}
dimV>dimW,由秩-零化度定理
dim
ker
(
T
)
=
dim
V
−
dim
r
a
n
(
T
)
\dim \ker(T) = \dim \mathcal{V} - \dim {\rm ran}(T)
dimker(T)=dimV−dimran(T),结合
dim
r
a
n
(
T
)
≤
dim
W
\dim {\rm ran}(T) \leq \dim \mathcal{W}
dimran(T)≤dimW,得:
dim
ker
(
T
)
≥
dim
V
−
dim
W
>
0
\dim \ker(T) \geq \dim \mathcal{V} - \dim \mathcal{W} > 0
dimker(T)≥dimV−dimW>0
这表明
ker
(
T
)
\ker(T)
ker(T) 中存在非零向量,即存在
x
∈
V
\mathbf{x} \in \mathcal{V}
x∈V(
x
≠
0
\mathbf{x} \neq 0
x=0),使得
T
(
x
)
=
0
T(\mathbf{x}) = 0
T(x)=0。
推论 2:定义域维数小于值域维数时,变换非满射
若
dim
V
<
dim
W
\dim \mathcal{V} < \dim \mathcal{W}
dimV<dimW,由秩-零化度定理
dim
r
a
n
(
T
)
=
dim
V
−
dim
ker
(
T
)
\dim {\rm ran}(T) = \dim \mathcal{V} - \dim \ker(T)
dimran(T)=dimV−dimker(T),结合
dim
ker
(
T
)
≥
0
\dim \ker(T) \geq 0
dimker(T)≥0,得:
dim
r
a
n
(
T
)
≤
dim
V
<
dim
W
\dim {\rm ran}(T) \leq \dim \mathcal{V} < \dim \mathcal{W}
dimran(T)≤dimV<dimW
这表明
r
a
n
(
T
)
{\rm ran}(T)
ran(T) 是
W
\mathcal{W}
W 的真子空间,即存在
y
∈
W
\mathbf{y} \in \mathcal{W}
y∈W,使得
y
∉
r
a
n
(
T
)
\mathbf{y} \notin {\rm ran}(T)
y∈/ran(T),线性变换
T
T
T 不是满射。
推论的矩阵语言表述
设矩阵 A A A 为 m × n m \times n m×n 阶矩阵,对应线性变换 T : V → W T: \mathcal{V} \to \mathcal{W} T:V→W( dim V = n \dim \mathcal{V} = n dimV=n, dim W = m \dim \mathcal{W} = m dimW=m),则推论可转化为:
1. 当 n > m n > m n>m(“矮胖”矩阵)时
由
dim
N
(
A
)
=
n
−
dim
C
(
A
)
\dim N(A) = n - \dim C(A)
dimN(A)=n−dimC(A) 与
dim
C
(
A
)
≤
m
\dim C(A) \leq m
dimC(A)≤m,得:
dim
N
(
A
)
≥
n
−
m
>
0
\dim N(A) \geq n - m > 0
dimN(A)≥n−m>0
即矩阵
A
A
A 的零空间
N
(
A
)
N(A)
N(A) 包含非零向量,齐次线性方程组
A
x
=
0
A\mathbf{x} = 0
Ax=0 有无限多组解。

图 2 “矮胖”矩阵(
n
>
m
n > m
n>m)的零空间示意图
2. 当 n < m n < m n<m(“瘦高”矩阵)时
由
dim
C
(
A
)
=
n
−
dim
N
(
A
)
\dim C(A) = n - \dim N(A)
dimC(A)=n−dimN(A) 与
dim
N
(
A
)
≥
0
\dim N(A) \geq 0
dimN(A)≥0,得:
dim
C
(
A
)
≤
n
<
m
\dim C(A) \leq n < m
dimC(A)≤n<m
即矩阵
A
A
A 的列空间
C
(
A
)
C(A)
C(A) 无法充满整个
R
m
\mathbb{R}^m
Rm,非齐次线性方程组
A
x
=
b
A\mathbf{x} = b
Ax=b 可能无解。

图 3 “瘦高”矩阵(
n
<
m
n < m
n<m)的列空间示意图
列空间与零空间,秩—零化度定理
_Equinox 已于 2025-07-27 09:34:02 修改
1. 向量空间的封闭性
任取空间内 A → \overrightarrow{A} A 和 B → \overrightarrow{B} B,且 A → ≠ k B → \overrightarrow{A} \neq k\overrightarrow{B} A=kB,满足 l 1 A → + l 2 B → l_1 \overrightarrow{A} + l_2 \overrightarrow{B} l1A+l2B 仍在空间内。
2. 列空间
The short useful word “span” describes all the linear combinations of a set of vectors. So the span of the columns of A (independent or not) is the column space.
“Span” 这个简短而有用的词汇描述了一组向量的所有线性组合。因此,矩阵 A 的列向量的张成(无论是否线性无关)构成了列空间。
张成(span):一个向量集合的所有线性组合。矩阵 A A A 的列向量的张成,即矩阵 A A A 的列空间(column space)。
线性方程组的意义在于:对于矩阵 A A A 和向量 B B B,方程 A X = B AX = B AX=B 有解当且仅当 B B B 在 A A A 的列空间内,即 B ∈ C ( A ) B \in C(A) B∈C(A)。
例如,矩阵
A
A
A 为
A
=
[
1
1
2
2
1
3
3
1
4
4
1
5
]
=
[
c
1
c
2
c
3
]
,
C
(
A
)
⊂
R
4
A = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \\ 3 & 1 & 4 \\ 4 & 1 & 5 \end{bmatrix} = \begin{bmatrix} c_1 & c_2 & c_3 \end{bmatrix}, \quad C(A) \subset \mathbb{R}^4
A=
123411112345
=[c1c2c3],C(A)⊂R4
对于方程组
A
X
=
B
AX = B
AX=B,有解:
当且仅当 B = k 1 c 1 + k 2 c 2 + k 3 c 3 B = k_1 c_1 + k_2 c_2 + k_3 c_3 B=k1c1+k2c2+k3c3,即 B B B 在 A A A 的列空间内, B ∈ C ( A ) B \in C(A) B∈C(A)。
因此,方程 A X = B AX = B AX=B 有解 <=> B B B 在 A A A 的列空间内。
3. 零空间
The nullspace N ( A ) N(A) N(A) in R n \mathbb{R}^n Rn contains all solutions x x x to A x = 0 Ax = 0 Ax=0. This includes x = 0 x = 0 x=0.
零空间 N ( A ) N(A) N(A) 在 R n \mathbb{R}^n Rn 中包含所有满足 A x = 0 Ax = 0 Ax=0 的解 x x x。这包括 x = 0 x = 0 x=0。
矩阵 A A A 的零空间是所有满足 A X = 0 AX = 0 AX=0 的解向量的集合。显然,零向量一定属于零空间。
4. I F 型
考虑矩阵
[
1
7
0
8
0
0
1
9
]
x
=
[
0
0
]
\begin{bmatrix} 1 & 7 & 0 & 8 \\ 0 & 0 & 1 & 9 \end{bmatrix} x = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
[10700189]x=[00]
其解向量为
x
=
[
−
7
1
0
0
]
,
x
=
[
−
8
0
−
9
1
]
x = \begin{bmatrix} -7 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \quad x = \begin{bmatrix} -8 \\ 0 \\ -9 \\ 1 \end{bmatrix}
x=
−7100
,x=
−80−91
或者可以写成矩阵形式
[
−
7
−
8
1
0
0
−
9
0
1
]
\begin{bmatrix} -7 & -8 \\ 1 & 0 \\ 0 & -9 \\ 0 & 1 \end{bmatrix}
−7100−80−91
为了更直观地表示,可以施加一个置换矩阵
P
P
P,使得
P
P
T
=
I
PP^T = I
PPT=I
则
[
1
7
0
8
0
0
1
9
]
P
P
T
[
−
7
−
8
1
0
0
−
9
0
1
]
=
[
1
7
0
8
0
0
1
9
]
[
1
0
0
0
0
0
1
0
0
1
0
0
0
0
0
1
]
[
1
0
0
0
0
0
1
0
0
1
0
0
0
0
0
1
]
[
−
7
−
8
1
0
0
−
9
0
1
]
=
[
1
0
7
8
0
1
0
9
]
[
−
7
−
8
1
0
0
−
9
0
1
]
=
[
0
0
0
0
0
0
0
0
]
\begin{aligned} \begin{bmatrix} 1 & 7 & 0 & 8 \\ 0 & 0 & 1 & 9 \end{bmatrix} PP^T \begin{bmatrix} -7 & -8 \\ 1 & 0 \\ 0 & -9 \\ 0 & 1 \end{bmatrix} &= \begin{bmatrix} 1 & 7 & 0 & 8 \\ 0 & 0 & 1 & 9 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -7 & -8 \\ 1 & 0 \\ 0 & -9 \\ 0 & 1 \end{bmatrix} \\ &= \begin{bmatrix} 1 & 0 & 7 & 8 \\ 0 & 1 & 0 & 9 \end{bmatrix} \begin{bmatrix} -7 & -8 \\ 1 & 0 \\ 0 & -9 \\ 0 & 1 \end{bmatrix} \\ &= \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \end{aligned}
[10700189]PPT
−7100−80−91
=[10700189]
1000001001000001
1000001001000001
−7100−80−91
=[10017089]
−7100−80−91
=
00000000
更一般地,对于
A
X
=
0
AX = 0
AX=0,可以对
A
X
=
0
AX = 0
AX=0 施加高斯消元法,转换成如下形式:
[
I
F
]
P
P
T
x
=
0
\begin{bmatrix} I & F \end{bmatrix} P P^T x = 0
[IF]PPTx=0
其中
I
I
I 为单位阵,
P
P
P 为置换阵。解向量可以表示为
[
−
F
I
]
\begin{bmatrix} -F \\ I \end{bmatrix}
[−FI]
事实上,这对应了高斯消元化为阶梯型后的主元和自由元。
由于 r ( I ) = r ( A ) r(I) = r(A) r(I)=r(A),可以得到 r ( F ) = n − r ( A ) r(F) = n - r(A) r(F)=n−r(A)。
矩阵 A A A 的零空间的维度正是 n − r ( A ) n - r(A) n−r(A)。
5. 秩—零化度定理
秩—零化度定理(Rank–Nullity Theorem) 表示有限维向量空间上线性变换 T : V → W T: V \rightarrow W T:V→W 定义空间的维数 dim V \text{dim} V dimV 等于核空间的维数加上像空间的维数。
对于矩阵变换 T ( x ) = A x T(x) = Ax T(x)=Ax 即列数 n n n 等于零空间的维数加上列空间的维数,对于对偶映射 T ( x ) = A T x T(x) = A^T x T(x)=ATx 即行数 m m m 等于左零空间的维数加上行空间的维数,值域维数即矩阵的秩
- dim V = dim Ker ( T ) + dim Im ( T ) \text{dim} V = \text{dim Ker}(T) + \text{dim Im}(T) dimV=dim Ker(T)+dim Im(T)
- n = dim Nul A + dim Col A n = \text{dim Nul}A + \text{dim Col}A n=dim NulA+dim ColA
- m = dim Nul A T + dim Row A m = \text{dim Nul}A^T + \text{dim Row}A m=dim NulAT+dim RowA
对于任意
n
×
n
n \times n
n×n 矩阵
A
A
A,有
r
(
A
)
+
r
(
N
(
A
)
)
=
n
r(A) + r(N(A)) = n
r(A)+r(N(A))=n
根据该定理可以得出一些有关秩的关系式:
-
对于 n n n 阶方阵 A A A 和 B B B,若 A B = 0 AB = 0 AB=0,则 r ( A ) + r ( B ) ≤ n r(A) + r(B) \leq n r(A)+r(B)≤n
证明:
A B = 0 ⇒ C ( B ) ⊂ N ( A ) ⇒ r ( B ) ≤ n − r ( A ) ⇒ r ( A ) + r ( B ) ≤ n AB = 0 \Rightarrow C(B) \subset N(A) \Rightarrow r(B) \leq n - r(A) \Rightarrow r(A) + r(B) \leq n AB=0⇒C(B)⊂N(A)⇒r(B)≤n−r(A)⇒r(A)+r(B)≤n -
r ( A T A ) = r ( A ) r(A^T A) = r(A) r(ATA)=r(A)
证明:
A T A x = 0 ⇔ x T A T A x = 0 ⇔ ∥ A x ∥ 2 = 0 ⇔ A x = 0 A^T A x = 0 \Leftrightarrow x^T A^T A x = 0 \Leftrightarrow \|Ax\|^2 = 0 \Leftrightarrow Ax = 0 ATAx=0⇔xTATAx=0⇔∥Ax∥2=0⇔Ax=0
因此, N ( A T A ) = N ( A ) N(A^T A) = N(A) N(ATA)=N(A),从而 r ( A T A ) = r ( A ) r(A^T A) = r(A) r(ATA)=r(A)。 -
r ( A ∗ ) r(A^*) r(A∗) 与 r ( A ) r(A) r(A) 的关系
- 当 r ( A ) = n r(A) = n r(A)=n 时( A A A 为满秩/可逆矩阵): A ∗ A^* A∗ 也是满秩的,即 r ( A ∗ ) = n r(A^*) = n r(A∗)=n。
- 当 r ( A ) = n − 1 r(A) = n - 1 r(A)=n−1 时: A ∗ A^* A∗ 的秩为 1,即 r ( A ∗ ) = 1 r(A^*) = 1 r(A∗)=1。
- 当 r ( A ) < n − 1 r(A) < n - 1 r(A)<n−1 时: A ∗ A^* A∗ 是零矩阵,即 r ( A ∗ ) = 0 r(A^*) = 0 r(A∗)=0。
证明:
- 当
r
(
A
)
=
n
r(A) = n
r(A)=n 时:
A A ∗ = ∣ A ∣ I A A^* = |A|I AA∗=∣A∣I
因此, A ∗ A^* A∗ 可逆, r ( A ∗ ) = n r(A^*) = n r(A∗)=n。 - 当
r
(
A
)
=
n
−
1
r(A) = n - 1
r(A)=n−1 时:
A A ∗ = 0 ⇒ C ( A ∗ ) ⊂ N ( A ) ⇒ r ( A ∗ ) ≤ r ( N ( A ) ) = 1 AA^* = 0 \Rightarrow C(A^*) \subset N(A) \Rightarrow r(A^*) \leq r(N(A)) = 1 AA∗=0⇒C(A∗)⊂N(A)⇒r(A∗)≤r(N(A))=1
又因为 r ( A ∗ ) ≥ 1 r(A^*) \geq 1 r(A∗)≥1,由夹逼定理可知, r ( A ∗ ) = 1 r(A^*) = 1 r(A∗)=1。 - 当
r
(
A
)
<
n
−
1
r(A) < n - 1
r(A)<n−1 时:
根据 A ∗ A^* A∗ 的定义,因为 r ( A ) < n − 1 r(A) < n - 1 r(A)<n−1,所以 A A A 的所有 n − 1 n - 1 n−1 阶子式均为 0,因此 A ∗ = 0 A^* = 0 A∗=0。
-
r ( A T A ) = r ( A ) r(A^T A) = r(A) r(ATA)=r(A) 且 C ( A T A ) = C ( A ) C(A^T A) = C(A) C(ATA)=C(A)
证明:
A x = 0 ⇒ A T A x = 0 ⇒ C ( A ) ⊂ C ( A T A ) \begin{array}{lll} Ax = 0 & \Rightarrow & {A^T}Ax = 0 \\ & \Rightarrow & C(A) \subset C({A^T}A) \end{array} Ax=0⇒⇒ATAx=0C(A)⊂C(ATA)
A T A x = 0 ⇒ x T A T A x = 0 ⇒ ( A x ) T ( A x ) = 0 ⇒ A x = 0 ⇒ C ( A T A ) ⊂ C ( A ) \begin{array}{lll} {A^T}Ax = 0 & \Rightarrow& {x^T}{A^T}Ax = 0\\ & \Rightarrow & {(Ax)^T}(Ax) = 0\\ & \Rightarrow & Ax = 0\\ & \Rightarrow & C({A^T}A) \subset C(A) \end{array} ATAx=0⇒⇒⇒⇒xTATAx=0(Ax)T(Ax)=0Ax=0C(ATA)⊂C(A)
因此, C ( A T A ) = C ( A ) C(A^T A) = C(A) C(ATA)=C(A),从而 r ( A ) = r ( A T A ) r(A) = r(A^T A) r(A)=r(ATA)。
via:
- byjus.com/maths/rank-and-nullity/
https://byjus.com/maths/rank-and-nullity/ - The Rank-Nullity Theorem C:GOODEMAIN.DVI - 4-9.pdf
https://www.math.purdue.edu/files/academic/courses/2010spring/MA26200/4-9.pdf - 「秩-零化度定理」(Rank-Nullity Theorem) - 知乎
https://zhuanlan.zhihu.com/p/102521072 - 列空间与零空间,秩—零化度定理_列空间和零空间-优快云博客 …
https://blog.youkuaiyun.com/EQUINOX1/article/details/149491205
3823

被折叠的 条评论
为什么被折叠?



