微积分·求导法则 | Derivative rules / 导数公式

注:本文为 “微积分 | Derivative rules” 相关。
英文引文,机翻未校。
中文引文,略作重排。
如有内容异常,请看原文。


Derivative rules – Common Rules, Explanations, and Examples

导数规则——常见规则、解释及示例

Derivative rules

Having a list of derivative rules you can always go back to will make your learning of differential calculus topics much easier. These derivative rules are the most fundamental rules you’ll encounter, and knowing how to apply them to differentiate different functions is crucial in calculus and its fields of applications.
拥有一份可以随时查阅的导数规则列表,将使你学习微分学相关主题变得更加轻松。这些导数规则是你将遇到的最基本的规则,掌握如何应用它们来对不同函数求导,在微积分及其应用领域至关重要。

Mastering the fundamental derivative rules will help you in differentiating complex functions and deriving more complex derivative rules.
掌握这些基本的导数规则,将帮助你对复杂函数求导,并推导出更复杂的导数规则。

This article will review all the fundamental derivative rules we’ve learned in the past and see how we can combine different rules to find the derivative of functions with multiple terms. This will also serve as a refresher and make sure you understand the basic derivative rules before learning more complex derivative rules.
本文将回顾我们过去学习的所有基本导数规则,并探讨如何结合不同规则来求解包含多个项的函数的导数。这也将作为一个复习,确保你在学习更复杂的导数规则之前,已经理解了这些基本的导数规则。

What are the common rules of derivatives?

常见导数规则有哪些?

In the past, we’ve derived the rules from the fundamental definition of derivatives, as shown below.
过去,我们从导数的基本定义出发,推导出了这些规则,如下所示。

f ′ ( x ) = lim ⁡ h → 0 f ( x + h ) − f ( x ) h f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} f(x)=h0limhf(x+h)f(x)

As we have also observed, this process can get tedious, especially when you’re working with functions with multiple terms, complex forms, and composite functions. When dealing with these types of functions’ derivatives, it helps if we already know the common rules of derivatives by heart.
正如我们所观察到的,这一过程可能相当繁琐,尤其是当你处理包含多个项、复杂形式以及复合函数的函数时。在处理这些函数的导数时,如果已经牢记常见的导数规则,将会非常有帮助。

We’ll review each fundamental rule here and briefly discuss how we can apply the particular derivative rule.
我们将在这里回顾每一条基本规则,并简要讨论如何应用每一条特定的导数规则。

– Constant Rule: 常数规则

d d x c = 0 \frac{d}{dx} c = 0 dxdc=0

The constant rule states that the derivative of a constant is equal to 0. This means that when you’re given a polynomial function, the constants’ derivatives will be equal to 0 using this rule.
常数规则表明,常数的导数等于 0。这意味着在给定的多项式函数中,常数项的导数将等于 0。

  • d d x 100 = 0 \frac{d}{dx} 100 = 0 dxd100=0
  • d d x − 1 = 0 \frac{d}{dx} -1 = 0 dxd1=0
  • d d x π = 0 \frac{d}{dx} \pi = 0 dxdπ=0

– Constant Multiple Rule: 常数倍数规则

d d x [ c ⋅ f ( x ) ] = c ⋅ d d x f ( x ) \frac{d}{dx} [c \cdot f(x)] = c \cdot \frac{d}{dx} f(x) dxd[cf(x)]=cdxdf(x)

When we have a coefficient before an expression, we can simply factor out the coefficient and take the derivative of the remaining expression.
当一个表达式前面有一个系数时,我们可以直接提取出该系数,并对剩余的表达式求导。

  • d d x 3 x = 3 d d x x \frac{d}{dx} 3x = 3 \frac{d}{dx} x dxd3x=3dxdx

  • d d x 4 x 2 = 4 d d x x 2 \frac{d}{dx} 4x^2 = 4 \frac{d}{dx} x^2 dxd4x2=4dxdx2

  • d d x ( − 12 e x ) = − 12 d d x e x \frac{d}{dx}\left( -12{{e}^{x}} \right)=-12\frac{d}{dx}{{e}^{x}} dxd(12ex)=12dxdex

– Power Rule: 幂规则

d d x x n = n x n − 1 \frac{d}{dx} x^n = nx^{n-1} dxdxn=nxn1

According to the power rule, differentiating a powered expression, x n x^n xn, we can simply use n n n as the derivative’s coefficient and decrease the exponent of x x x by 1.
根据幂规则,对幂表达式 x n x^n xn 求导时,我们可以直接使用 n n n 作为导数的系数,并将 x x x 的指数减 1。

  • d d x x 5 = 5 x 4 \frac{d}{dx} x^5 = 5x^4 dxdx5=5x4
  • d d x x 14 = 14 x 13 \frac{d}{dx} x^{14} = 14x^{13} dxdx14=14x13
  • d d x x − 4 = − 4 x − 5 \frac{d}{dx} x^{-4} = -4x^{-5} dxdx4=4x5

– Sum and Difference Rules: 和差规则

d d x [ f ( x ) ± g ( x ) ] = f ′ ( x ) ± g ′ ( x ) \frac{d}{dx} [f(x) \pm g(x)] = f'(x) \pm g'(x) dxd[f(x)±g(x)]=f(x)±g(x)

When a function is made up of two or more simpler functions, we can find its derivative by adding or subtracting the derivatives of the simpler functions.
当一个函数由两个或多个更简单的函数组成时,我们可以通过加或减这些简单函数的导数来求得其导数。

  • d d x ( x 5 − 2 x ) = d d x x 5 − d d x 2 x \frac{d}{dx} (x^5 - 2x) = \frac{d}{dx} x^5 - \frac{d}{dx} 2x dxd(x52x)=dxdx5dxd2x
  • d d x ( x 3 + 4 x + 6 ) = d d x x 3 + d d x 4 x + d d x 6 \frac{d}{dx} (x^3 + 4x + 6) = \frac{d}{dx} x^3 + \frac{d}{dx} 4x + \frac{d}{dx} 6 dxd(x3+4x+6)=dxdx3+dxd4x+dxd6
  • d d x ( x 2 + x − 1 x ) = d d x x 2 − d d x x − d d x 1 x \frac{d}{dx} (x^2 + x - \frac{1}{x}) = \frac{d}{dx} x^2 - \frac{d}{dx} x - \frac{d}{dx} \frac{1}{x} dxd(x2+xx1)=dxdx2dxdxdxdx1

– Product Rule: 乘积规则

d d x [ f ( x ) ⋅ g ( x ) ] = f ′ ( x ) g ( x ) + g ′ ( x ) f ( x ) \frac{d}{dx} [f(x) \cdot g(x)] = f'(x)g(x) + g'(x)f(x) dxd[f(x)g(x)]=f(x)g(x)+g(x)f(x)

The product rule states that when a function is a product of two functions, we can find the derivative of functions by pairing the derivative of the first function and the second function. Do the same for the second function’s derivative and first function.
乘积规则表明,当一个函数是两个函数的乘积时,我们可以通过将第一个函数的导数与第二个函数配对,以及将第二个函数的导数与第一个函数配对,来求得该函数的导数。

  • d d x ( 4 x ) ( e x ) = d d x ( 4 x ) ⋅ e x − d d x ( e x ) ⋅ 4 x \frac{d}{dx} (4x)(e^x) = \frac{d}{dx} (4x) \cdot e^x - \frac{d}{dx} (e^x) \cdot 4x dxd(4x)(ex)=dxd(4x)exdxd(ex)4x
  • d d x ( − 2 x ) ( x ) = d d x ( − 2 x ) ⋅ x − d d x x ⋅ ( − 2 x ) \frac{d}{dx}(-2x)(\sqrt{x})=\frac{d}{dx}(-2x)\cdot \sqrt{x}-\frac{d}{dx}\sqrt{x}\cdot (-2x) dxd(2x)(x )=dxd(2x)x dxdx (2x)
  • d d x 4 x e x = d d x ( 4 x ) ⋅ e x − d d x ( e x ) ⋅ 4 x \frac{d}{dx} 4x e^x = \frac{d}{dx} (4x) \cdot e^x - \frac{d}{dx} (e^x) \cdot 4x dxd4xex=dxd(4x)exdxd(ex)4x

– Quotient Rule: 商规则

d d x f ( x ) g ( x ) = g ( x ) f ′ ( x ) − f ( x ) g ′ ( x ) [ g ( x ) ] 2 \frac{d}{dx} \frac{f(x)}{g(x)} = \frac{g(x)f'(x) - f(x)g'(x)}{[g(x)]^2} dxdg(x)f(x)=[g(x)]2g(x)f(x)f(x)g(x)

From the quotient rule, we can find the derivative of the two functions’ ratio by taking the difference between the product of the derivative of the numerator and the denominator minus the product of the derivative of the denominator and the numerator. Divide this result by the square of the denominator.
根据商规则,我们可以通过计算分子的导数与分母的乘积减去分母的导数与分子的乘积,再将结果除以分母的平方,来求得两个函数比值的导数。

  • d d x 3 x 2 sin ⁡ x = ( sin ⁡ x ) d d x ( 3 x 2 ) − ( 3 x 2 ) d d x sin ⁡ x ÷ ( sin ⁡ x ) 2 \frac{d}{dx} \frac{3x^2}{\sin x} = (\sin x) \frac{d}{dx} (3x^2) - (3x^2) \frac{d}{dx} \sin x \div (\sin x)^2 dxdsinx3x2=(sinx)dxd(3x2)(3x2)dxdsinx÷(sinx)2
  • d d x x 2 x − 1 = ( 2 x − 1 ) d d x x − x d d x ( 2 x − 1 ) ÷ ( 2 x − 1 ) 2 \frac{d}{dx} \frac{x^2}{x - 1} = (2x - 1) \frac{d}{dx} x - x \frac{d}{dx} (2x - 1) \div (2x - 1)^2 dxdx1x2=(2x1)dxdxxdxd(2x1)÷(2x1)2
  • d d x 3 x 2 − 1 e x = e x d d x ( 3 x 2 − 1 ) − ( 3 x 2 − 1 ) d d x e x ÷ ( e x ) 2 \frac{d}{dx} \frac{3x^2 - 1}{e^x} = e^x \frac{d}{dx} (3x^2 - 1) - (3x^2 - 1) \frac{d}{dx} e^x \div (e^x)^2 dxdex3x21=exdxd(3x21)(3x21)dxdex÷(ex)2

These are the fundamental derivative rules that we should learn by heart if we want to master differentiating the common functions we’ve been dealing with in the past.
这些是我们应该牢记的基本导数规则,以便掌握过去我们处理过的常见函数的求导方法。

What are the common rules of derivatives?

Derivative Rules(导数法则)

  1. Constant Rule(常数法则)
    d d x c = 0 \frac{d}{dx} c = 0 dxdc=0
    c c c is any constant; the derivative of a constant function is always 0.
    c c c 为任意常数,常数函数的导数恒为 0

  2. Constant Multiple Rule(常数因子法则)
    d d x [ c ⋅ f ( x ) ] = c ⋅ d d x f ( x ) \frac{d}{dx} [c \cdot f(x)] = c \cdot \frac{d}{dx} f(x) dxd[cf(x)]=cdxdf(x)
    c c c is a non-zero constant; the constant factor can be factored out of the differentiation operation.
    c c c 为非零常数,常数因子可从导数运算中提出

  3. Power Rule(幂函数法则)
    d d x x n = n ⋅ x n − 1 \frac{d}{dx} x^n = n \cdot x^{n-1} dxdxn=nxn1
    n n n is a real number; this rule applies to the differentiation of power functions.
    修正原表述函数符号, n n n 为实数,适用于幂函数求导

  4. Sum Rule(和法则)
    d d x [ f ( x ) + g ( x ) ] = f ′ ( x ) + g ′ ( x ) \frac{d}{dx} [f(x) + g(x)] = f'(x) + g'(x) dxd[f(x)+g(x)]=f(x)+g(x)
    The derivative of the sum of two functions equals the sum of their derivatives; redundant parentheses can be removed.
    两函数和的导数等于两函数导数的和,可去除冗余括号

  5. Difference Rule(差法则)
    d d x [ f ( x ) − g ( x ) ] = f ′ ( x ) − g ′ ( x ) \frac{d}{dx} [f(x) - g(x)] = f'(x) - g'(x) dxd[f(x)g(x)]=f(x)g(x)
    The derivative of the difference of two functions equals the difference of their derivatives; redundant parentheses can be removed.
    两函数差的导数等于两函数导数的差,可去除冗余括号

  6. Product Rule(乘积法则)
    d d x [ f ( x ) ⋅ g ( x ) ] = g ( x ) ⋅ f ′ ( x ) + f ( x ) ⋅ g ′ ( x ) \frac{d}{dx} [f(x) \cdot g(x)] = g(x) \cdot f'(x) + f(x) \cdot g'(x) dxd[f(x)g(x)]=g(x)f(x)+f(x)g(x)
    The derivative of the product of two functions follows the rule: “derivative of the first times the second + first times derivative of the second”.
    两函数乘积的导数遵循“前导后不导 + 前不导后导”规则

  7. Quotient Rule(商法则)
    d d x [ f ( x ) g ( x ) ] = g ( x ) ⋅ f ′ ( x ) − f ( x ) ⋅ g ′ ( x ) [ g ( x ) ] 2 \frac{d}{dx} \left[ \frac{f(x)}{g(x)} \right] = \frac{g(x) \cdot f'(x) - f(x) \cdot g'(x)}{[g(x)]^2} dxd[g(x)f(x)]=[g(x)]2g(x)f(x)f(x)g(x)
    The derivative of the quotient of two functions follows the rule: " (derivative of the numerator times the denominator - numerator times derivative of the denominator) divided by the square of the denominator"; requires g ( x ) ≠ 0 g(x) \neq 0 g(x)=0.
    两函数商的导数遵循“分子导乘分母 - 分子乘分母导,再除以分母平方”规则,要求 g ( x ) ≠ 0 g(x) \neq 0 g(x)=0

  8. Chain Rule(链式法则)
    d d x [ f ( g ( x ) ) ] = f ′ ( g ( x ) ) ⋅ g ′ ( x ) \frac{d}{dx} [f(g(x))] = f'(g(x)) \cdot g'(x) dxd[f(g(x))]=f(g(x))g(x)
    For the composite function f ( g ( x ) ) f(g(x)) f(g(x)), its derivative equals the derivative of the outer function with respect to the inner function multiplied by the derivative of the inner function with respect to the independent variable; redundant parentheses can be removed.
    复合函数 f ( g ( x ) ) f(g(x)) f(g(x)) 的导数等于外层函数对中间变量的导数乘中间变量对自变量的导数,可去除冗余括号

How to differentiate functions using the list of derivative rules?

如何使用导数规则列表对函数求导?

Now that we’ve reviewed the fundamental derivative rules we need, the next important thing for us to learn is knowing how to use a combination of these rules to differentiate polynomial, rational, radical, and other fundamental functions.
现在我们已经复习了所需的这些基本导数规则,接下来需要学习的是如何结合使用这些规则来对多项式、有理函数、根式函数以及其他基本函数求导。

  • See if the sum or difference rule applies to the function and apply them first.
    检查和差规则是否适用于该函数,并优先应用。

  • When you find constants in the expressions, expect it’s the constants’ derivatives to become zero.
    当表达式中出现常数时,预期其导数将变为零。

  • If the expressions have coefficients before the terms, make sure to apply the constant multiple rule.
    如果表达式中各项前面有系数,确保应用常数倍数规则。

  • Check if the function is in factored form or a rational expression and apply the product or quotient rule, respectively.
    检查该函数是否为因式分解形式或有理表达式,并分别应用乘积规则或商规则。

There are instances when we might need to apply more complex derivatives, such as the formula for differentiating composite functions (also known as the chain rule) and trigonometric expressions, as shown below.
有时我们可能需要应用更复杂的导数,例如复合函数的求导公式(也称为链式法则)和三角表达式,如下所示。

Additional Derivative RulesExpression
Chain Rule(链式法则) d d x f ( g ( x ) ) = f ′ ( g ( x ) ) ⋅ g ′ ( x ) \frac{d}{dx} f(g(x)) = f'(g(x)) \cdot g'(x) dxdf(g(x))=f(g(x))g(x)
Exponential Function(指数函数) d d x a x = a x ln ⁡ a \frac{d}{dx} a^x = a^x \ln a dxdax=axlna
Natural Exponential Function(自然指数函数) d d x e x = e x \frac{d}{dx} e^x = e^x dxdex=ex
Trigonometric Functions(三角函数)Expression
Sine Function d d x sin ⁡ x = cos ⁡ x \frac{d}{dx} \sin x = \cos x dxdsinx=cosx
Cosine Function d d x cos ⁡ x = − sin ⁡ x \frac{d}{dx} \cos x = -\sin x dxdcosx=sinx
Tangent Function d d x tan ⁡ x = sec ⁡ 2 x \frac{d}{dx} \tan x = \sec^2 x dxdtanx=sec2x

Now that we’ve learned the important derivative rules and the process of differentiating complex expressions, it’s time for us to apply what we’ve learned by working on the functions shown below.
现在我们已经学习了重要的导数规则以及对复杂表达式求导的过程,是时候通过解决以下函数来应用我们所学到的知识了。

Example 1

Find the derivative of the polynomial function, f ( x ) = 4 x 3 − 5 x 2 + 6 x − 1 f(x) = 4x^3 - 5x^2 + 6x - 1 f(x)=4x35x2+6x1.
求多项式函数 f ( x ) = 4 x 3 − 5 x 2 + 6 x − 1 f(x) = 4x^3 - 5x^2 + 6x - 1 f(x)=4x35x2+6x1 的导数。

Solution

Since we can see a polynomial function with terms being added and subtracted to each other, we can apply the sum and difference rules to find the derivative of f ( x ) f(x) f(x). This means that we take the derivative of each of the terms to find f ′ ( x ) f'(x) f(x).
由于我们看到的是一个包含相加和相减项的多项式函数,因此可以应用和差规则来求 f ( x ) f(x) f(x) 的导数。这意味着我们需要分别对每一项求导,以得到 f ′ ( x ) f'(x) f(x)

f ′ ( x ) = d d x [ 4 x 3 − 5 x 2 + 6 x − 1 ] = d d x 4 x 3 − d d x 5 x 2 + d d x 6 x − d d x 1 \begin{aligned} {f}'(x) & =\frac{d}{dx}[4{{x}^{3}}-5{{x}^{2}}+6x-1] \\ & =\frac{d}{dx}4{{x}^{3}}-\frac{d}{dx}5{{x}^{2}}+\frac{d}{dx}6x-\frac{d}{dx}1 \end{aligned} f(x)=dxd[4x35x2+6x1]=dxd4x3dxd5x2+dxd6xdxd1

We can then replace d d x 1 \frac{d}{dx} 1 dxd1 with 0 and apply the given constant multiple rule to take out the coefficients from each term.
然后,我们将 d d x 1 \frac{d}{dx} 1 dxd1 替换为 0,并应用常数倍数规则,将每一项的系数提取出来。

f ′ ( x ) = d d x 4 x 3 − d d x 5 x 2 + d d x 6 x − 0 = 4 d d x x 3 − 5 d d x x 2 + 6 d d x x \begin{aligned} {f}'(x) & =\frac{d}{dx}4{{x}^{3}}-\frac{d}{dx}5{{x}^{2}}+\frac{d}{dx}6x-0 \\ & =4\frac{d}{dx}{{x}^{3}}-5\frac{d}{dx}{{x}^{2}}+6\frac{d}{dx}x \end{aligned} f(x)=dxd4x3dxd5x2+dxd6x0=4dxdx35dxdx2+6dxdx

We can use the power rule for each term to differentiate powers x − x 3 x - x^3 xx3, x 2 x^2 x2, and x = x 1 x = x^1 x=x1.
我们可以对每一项使用幂规则来对 x − x 3 x - x^3 xx3 x 2 x^2 x2 x = x 1 x = x^1 x=x1 求导。

f ′ ( x ) = 4 ( 3 x 3 − 1 ) − 5 ( 2 x 2 − 1 ) + 6 ( 1 x 1 − 1 ) = 12 x 2 − 10 x 1 + 6 x 0 = 12 x 2 − 10 x + 6 \begin{aligned} {f}'(x) & =4(3{{x}^{3-1}})-5(2{{x}^{2-1}})+6(1{{x}^{1-1}}) \\ & =12{{x}^{2}}-10{{x}^{1}}+6{{x}^{0}}=12{{x}^{2}}-10x+6 \end{aligned} f(x)=4(3x31)5(2x21)+6(1x11)=12x210x1+6x0=12x210x+6

This shows that through different derivative rules, we can easily find the derivative of polynomials such as f ( x ) = 4 x 3 − 5 x 2 + 6 x − 1 f(x) = 4x^3 - 5x^2 + 6x - 1 f(x)=4x35x2+6x1. In fact, we have f ′ ( x ) = 12 x 2 − 10 x + 6 f'(x) = 12x^2 - 10x + 6 f(x)=12x210x+6.
这表明,通过使用不同的导数规则,我们可以轻松地求出像 f ( x ) = 4 x 3 − 5 x 2 + 6 x − 1 f(x) = 4x^3 - 5x^2 + 6x - 1 f(x)=4x35x2+6x1 这样的多项式的导数。实际上,我们得到 f ′ ( x ) = 12 x 2 − 10 x + 6 f'(x) = 12x^2 - 10x + 6 f(x)=12x210x+6

Example 2

Find the derivative of the function, g ( x ) = sin ⁡ x 4 − 5 x 5 + x g(x) = \sin x^4 - 5x^5 + x g(x)=sinx45x5+x.
求函数 g ( x ) = sin ⁡ x 4 − 5 x 5 + x g(x) = \sin x^4 - 5x^5 + x g(x)=sinx45x5+x 的导数。

Solution

We’ll now work with a more complex function, that consists of three terms: sin ⁡ x 4 \sin x^4 sinx4, 5 x 4 5x^4 5x4, and x x x. Through sum and difference rules, we’ll be able to find the expression for g ′ ( x ) g'(x) g(x) by finding the corresponding derivatives of the three terms.
现在我们将处理一个更复杂的函数,它包含三个项: sin ⁡ x 4 \sin x^4 sinx4 5 x 4 5x^4 5x4 x x x。通过应用和差规则,我们可以通过求这三个项的导数来得到 g ′ ( x ) g'(x) g(x) 的表达式。

g ′ ( x ) = d d x [ sin ⁡ x 4 − 5 x 5 + x ] = d d x sin ⁡ x 4 − d d x 5 x 5 + d d x x \begin{aligned} {g}'(x) & =\frac{d}{dx}[\sin {{x}^{4}}-5{{x}^{5}}+x] \\ & =\frac{d}{dx}\sin {{x}^{4}}-\frac{d}{dx}5{{x}^{5}}+\frac{d}{dx}x \end{aligned} g(x)=dxd[sinx45x5+x]=dxdsinx4dxd5x5+dxdx

Each term will require different sets of derivative rules for us to find their derivatives, so here’s a table summarizing how we can differentiate each term.
每一项都需要不同的导数规则来求导,以下是一个总结如何对每一项求导的表格。

d d x sin ⁡ x 4 \frac{d}{dx} \sin x^4 dxdsinx4 d d x sin ⁡ x 4 = 1 4 d d x sin ⁡ x \frac{d}{dx} \sin x^4 = \frac{1}{4} \frac{d}{dx} \sin x dxdsinx4=41dxdsinx, Constant Multiple Rule
= 1 4 cos ⁡ x \frac{1}{4} \cos x 41cosx, Derivative of Sine
d d x 5 x 5 \frac{d}{dx} 5x^5 dxd5x5 d d x 5 x 5 = 5 d d x x 5 \frac{d}{dx} 5x^5 = 5 \frac{d}{dx} x^5 dxd5x5=5dxdx5, Constant Multiple Rule
= 5 ( 5 x 5 − 1 ) 5(5x^{5 - 1}) 5(5x51), Power Rule
= 25 x 4 25x^4 25x4
d d x x \frac{d}{dx} x dxdx d d x x = d d x x 1 / 2 = 1 2 ( x 1 / 2 − 1 ) \frac{d}{dx} x = \frac{d}{dx} x^{1/2} = \frac{1}{2}(x^{1/2 - 1}) dxdx=dxdx1/2=21(x1/21), Power Rule
= 1 2 x − 1 / 2 = 1 2 x \frac{1}{2}x^{-1/2} = \frac{1}{2x} 21x1/2=2x1

Let’s substitute these expressions back into g ′ ( x ) g'(x) g(x) to find the derivative of g ( x ) g(x) g(x).
现在,我们将这些表达式代入 g ′ ( x ) g'(x) g(x),以求得 g ( x ) g(x) g(x) 的导数。

g ′ ( x ) = d d x sin ⁡ x 4 − d d x 5 x 5 + d d x x = 1 4 cos ⁡ x − 25 x 4 + 1 2 x \begin{aligned} {g}'(x) & =\frac{d}{dx}\sin {{x}^{4}}-\frac{d}{dx}5{{x}^{5}}+\frac{d}{dx}x \\ & =\frac{1}{4}\cos x-25{{x}^{4}}+\frac{1}{2x} \end{aligned} g(x)=dxdsinx4dxd5x5+dxdx=41cosx25x4+2x1

This example shows how we can combine the different derivative rules to find the derivative of a more complex function such as g ( x ) g(x) g(x). Hence, we have g ′ ( x ) = 1 4 cos ⁡ x − 25 x 4 + 1 2 x g'(x) = \frac{1}{4} \cos x - 25x^4 + \frac{1}{2x} g(x)=41cosx25x4+2x1.
这个例子展示了我们如何结合不同的导数规则来求得像 g ( x ) g(x) g(x) 这样更复杂函数的导数。因此,我们得到 g ′ ( x ) = 1 4 cos ⁡ x − 25 x 4 + 1 2 x g'(x) = \frac{1}{4} \cos x - 25x^4 + \frac{1}{2x} g(x)=41cosx25x4+2x1

Practice Questions

练习题

1. Find the derivative of the following polynomial functions:

求以下多项式函数的导数:

a. f ( x ) = 12 x 5 − 4 x 6 + 2 x 4 − 6 f(x) = 12x^5 - 4x^6 + 2x^4 - 6 f(x)=12x54x6+2x46

b. g ( x ) = − 6 x 5 − 12 x 3 − 8 g(x) = -6x^5 - 12x^3 - 8 g(x)=6x512x38

c. h ( x ) = − 5 x 8 + 6 x 6 − 12 x 2 + 9 x h(x) = -5x^8 + 6x^6 - 12x^2 + 9x h(x)=5x8+6x612x2+9x

2. Find the derivative of the following functions:

求以下函数的导数:

a. f ( x ) = 25 x − 6 x 2 f(x) = 25x - 6x^2 f(x)=25x6x2

b. g ( x ) = 4 x 2 − 4 x + 1 x g(x) = 4x^2 - 4x + \frac{1}{x} g(x)=4x24x+x1

c. h ( x ) = 2 x − 5 x 3 + 1 x h(x) = 2x - 5x^3 + \frac{1}{x} h(x)=2x5x3+x1

3. Find the derivative of the following functions:

求以下函数的导数:

a. f ( x ) = ( x − 1 ) ( 2 x + 3 ) 2 f(x) = (x - 1)(2x + 3)^2 f(x)=(x1)(2x+3)2

b. g ( x ) = x 2 − 4 x + 4 3 x g(x) = \frac{x^2 - 4x + 4}{3x} g(x)=3xx24x+4

c. h ( x ) = 6 x 2 4 − 3 x h(x) = \frac{6x^2}{4} - 3x h(x)=46x23x

Answer Key

答案

1.

a. f ′ ( x ) = 60 x 4 − 24 x 5 + 8 x 3 f'(x) = 60x^4 - 24x^5 + 8x^3 f(x)=60x424x5+8x3

b. g ′ ( x ) = − 30 x 4 − 36 x 2 g'(x) = -30x^4 - 36x^2 g(x)=30x436x2

c. h ′ ( x ) = − 40 x 7 + 36 x 5 − 24 x + 9 h'(x) = -40x^7 + 36x^5 - 24x + 9 h(x)=40x7+36x524x+9

2.

a. f ′ ( x ) = − 25 x 2 − 12 x f'(x) = -25x^2 - 12x f(x)=25x212x

b. g ′ ( x ) = 8 x − 2 x − 1 x 2 g'(x) = 8x - 2x^{-1}x^2 g(x)=8x2x1x2

c. h ′ ( x ) = 1 x − 5 ⋅ 3 x 2 / 3 − 1 x 2 h'(x) = \frac{1}{x} - 5 \cdot 3x^{2/3} - \frac{1}{x^2} h(x)=x153x2/3x21

3.

a. f ′ ( x ) = ( 6 x − 1 ) ( 2 x + 3 ) f'(x) = (6x - 1)(2x + 3) f(x)=(6x1)(2x+3) or f ′ ( x ) = 12 x 2 + 6 x − 3 f'(x) = 12x^2 + 6x - 3 f(x)=12x2+6x3

b. g ′ ( x ) = 1 3 − 4 3 x 2 g'(x) = \frac{1}{3} - \frac{4}{3x^2} g(x)=313x24 or g ′ ( x ) = − 4 − x 2 3 x 2 g'(x) = -\frac{4 - x^2}{3x^2} g(x)=3x24x2

c. h ′ ( x ) = 48 x − 27 x 2 ( 4 − 3 x ) 3 / 2 h'(x) = \frac{48x - 27x^2}{(4 - 3x)^{3/2}} h(x)=(43x)3/248x27x2


微积分基础:导数与积分公式及法则

1. 导数

1.1 基本初等函数的导数公式

基本初等函数的导数是微积分运算的基础,其结果直接来源于导数的定义或极限运算,下表系统梳理了常用基本初等函数的导函数:

原函数导函数备注
y = C y = C y=C C C C 为常数) y ′ = 0 y' = 0 y=0常数的导数为零,反映常数函数图像(水平线)的斜率恒为零
y = x μ y = x^\mu y=xμ μ \mu μ 为实数) y ′ = μ x μ − 1 y' = \mu x^{\mu - 1} y=μxμ1幂函数求导法则,适用于任意实数幂次,如 μ = 2 \mu = 2 μ=2 时, y = x 2 y = x^2 y=x2 的导数为 y ′ = 2 x y' = 2x y=2x
y = a x y = a^x y=ax a > 0 a > 0 a>0 a ≠ 1 a \neq 1 a=1 y ′ = a x ln ⁡ a y' = a^x \ln a y=axlna指数函数求导法则,底数 a a a 需满足正数且不为1,保证函数定义域为 R \mathbb{R} R
y = e x y = e^x y=ex y ′ = e x y' = e^x y=ex自然指数函数的特殊情况( a = e a = e a=e ln ⁡ e = 1 \ln e = 1 lne=1),其导数等于自身,是微积分中的核心函数之一
y = log ⁡ a x y = \log_a x y=logax a > 0 a > 0 a>0 a ≠ 1 a \neq 1 a=1 y ′ = 1 x ln ⁡ a y' = \frac{1}{x \ln a} y=xlna1对数函数求导法则,定义域为 x > 0 x > 0 x>0,底数 a a a 满足正数且不为1
y = ln ⁡ x y = \ln x y=lnx y ′ = 1 x y' = \frac{1}{x} y=x1自然对数函数的特殊情况( a = e a = e a=e ln ⁡ e = 1 \ln e = 1 lne=1),定义域为 x > 0 x > 0 x>0
y = sin ⁡ x y = \sin x y=sinx y ′ = cos ⁡ x y' = \cos x y=cosx正弦函数的导数为余弦函数,基于三角函数的极限定义推导得出
y = cos ⁡ x y = \cos x y=cosx y ′ = − sin ⁡ x y' = -\sin x y=sinx余弦函数的导数为负的正弦函数,与正弦函数导数形成对偶关系
y = tan ⁡ x y = \tan x y=tanx y ′ = sec ⁡ 2 x y' = \sec^2 x y=sec2x tan ⁡ x = sin ⁡ x cos ⁡ x \tan x = \frac{\sin x}{\cos x} tanx=cosxsinx,由商的求导法则推导,定义域为 x ≠ k π + π 2 x \neq k\pi + \frac{\pi}{2} x=+2π k ∈ Z k \in \mathbb{Z} kZ
y = cot ⁡ x y = \cot x y=cotx y ′ = − csc ⁡ 2 x y' = -\csc^2 x y=csc2x cot ⁡ x = cos ⁡ x sin ⁡ x \cot x = \frac{\cos x}{\sin x} cotx=sinxcosx,由商的求导法则推导,定义域为 x ≠ k π x \neq k\pi x= k ∈ Z k \in \mathbb{Z} kZ
y = sec ⁡ x y = \sec x y=secx y ′ = sec ⁡ x tan ⁡ x y' = \sec x \tan x y=secxtanx sec ⁡ x = 1 cos ⁡ x \sec x = \frac{1}{\cos x} secx=cosx1,由商的求导法则推导,定义域同 tan ⁡ x \tan x tanx
y = csc ⁡ x y = \csc x y=cscx y ′ = − csc ⁡ x cot ⁡ x y' = -\csc x \cot x y=cscxcotx csc ⁡ x = 1 sin ⁡ x \csc x = \frac{1}{\sin x} cscx=sinx1,由商的求导法则推导,定义域同 cot ⁡ x \cot x cotx
y = arcsin ⁡ x y = \arcsin x y=arcsinx y ′ = 1 1 − x 2 y' = \frac{1}{\sqrt{1 - x^2}} y=1x2 1反正弦函数的导数,定义域为 x ∈ ( − 1 , 1 ) x \in (-1, 1) x(1,1),由反函数求导法则推导
y = arccos ⁡ x y = \arccos x y=arccosx y ′ = − 1 1 − x 2 y' = -\frac{1}{\sqrt{1 - x^2}} y=1x2 1反余弦函数的导数,定义域为 x ∈ ( − 1 , 1 ) x \in (-1, 1) x(1,1),与反正弦函数导数符号相反
y = arctan ⁡ x y = \arctan x y=arctanx y ′ = 1 1 + x 2 y' = \frac{1}{1 + x^2} y=1+x21反正切函数的导数,定义域为 R \mathbb{R} R,由反函数求导法则推导
y = arccot x y = \text{arccot x} y=arccot x y ′ = − 1 1 + x 2 y' = -\frac{1}{1 + x^2} y=1+x21反余切函数的导数,定义域为 R \mathbb{R} R,与反正切函数导数符号相反

1.2 导数的四则运算法则

设函数 u = u ( x ) u = u(x) u=u(x) v = v ( x ) v = v(x) v=v(x) 均在点 x x x 处可导,则其和、差、积、商(分母不为零)的函数也在点 x x x 处可导,且满足以下法则:

  1. 和差法则 ( u ( x ) ± v ( x ) ) ′ = u ′ ( x ) ± v ′ ( x ) (u(x) \pm v(x))' = u'(x) \pm v'(x) (u(x)±v(x))=u(x)±v(x)
    含义:两个可导函数的和(或差)的导数,等于这两个函数的导数的和(或差)。

  2. 乘积法则 ( u ( x ) ⋅ v ( x ) ) ′ = u ′ ( x ) v ( x ) + u ( x ) v ′ ( x ) (u(x) \cdot v(x))' = u'(x)v(x) + u(x)v'(x) (u(x)v(x))=u(x)v(x)+u(x)v(x)
    推论(常数因子法则): [ C ⋅ u ( x ) ] ′ = C ⋅ u ′ ( x ) [C \cdot u(x)]' = C \cdot u'(x) [Cu(x)]=Cu(x) C C C 为常数)
    含义:两个可导函数乘积的导数,等于第一个函数的导数乘第二个函数,加上第一个函数乘第二个函数的导数;常数与可导函数乘积的导数,等于常数乘该函数的导数。

  3. 商法则 ( u ( x ) v ( x ) ) ′ = u ′ ( x ) v ( x ) − u ( x ) v ′ ( x ) [ v ( x ) ] 2 \left( \frac{u(x)}{v(x)} \right)' = \frac{u'(x)v(x) - u(x)v'(x)}{[v(x)]^2} (v(x)u(x))=[v(x)]2u(x)v(x)u(x)v(x) v ( x ) ≠ 0 v(x) \neq 0 v(x)=0
    含义:两个可导函数商的导数,等于分子的导数乘分母,减去分子乘分母的导数,再除以分母的平方(分母不能为零)。

1.3 反函数的求导法则

定理:设函数 x = f ( y ) x = f(y) x=f(y) 在区间 I y I_y Iy 内单调、可导,且 f ′ ( y ) ≠ 0 f'(y) \neq 0 f(y)=0,则其反函数 y = f − 1 ( x ) y = f^{-1}(x) y=f1(x) 在对应的区间 I x = f ( I y ) I_x = f(I_y) Ix=f(Iy) 内也可导,且满足:
[ f − 1 ( x ) ] ′ = 1 f ′ ( y ) 或 d y d x = 1 d x d y [f^{-1}(x)]' = \frac{1}{f'(y)} \quad \text{或} \quad \frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} [f1(x)]=f(y)1dxdy=dydx1
含义:反函数的导数等于原函数导数的倒数(需保证原函数导数不为零)。例如,由 x = sin ⁡ y x = \sin y x=siny y ∈ ( − π 2 , π 2 ) y \in (-\frac{\pi}{2}, \frac{\pi}{2}) y(2π,2π))的导数 d x d y = cos ⁡ y \frac{dx}{dy} = \cos y dydx=cosy,可推出其反函数 y = arcsin ⁡ x y = \arcsin x y=arcsinx 的导数 d y d x = 1 cos ⁡ y = 1 1 − x 2 \frac{dy}{dx} = \frac{1}{\cos y} = \frac{1}{\sqrt{1 - x^2}} dxdy=cosy1=1x2 1

1.4 复合函数的求导法则(链式法则)

定理:设函数 u = g ( x ) u = g(x) u=g(x) 在点 x x x 处可导,函数 y = f ( u ) y = f(u) y=f(u) 在对应点 u = g ( x ) u = g(x) u=g(x) 处可导,则复合函数 y = f [ g ( x ) ] y = f[g(x)] y=f[g(x)] 在点 x x x 处可导,且满足:
d y d x = d y d u ⋅ d u d x 或 y ′ ( x ) = f ′ ( u ) ⋅ g ′ ( x ) \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \quad \text{或} \quad y'(x) = f'(u) \cdot g'(x) dxdy=dudydxduy(x)=f(u)g(x)

关键说明:
  1. 链式法则可推广到多个中间变量的情况。例如,若 y = f ( u ) y = f(u) y=f(u) u = g ( v ) u = g(v) u=g(v) v = h ( x ) v = h(x) v=h(x) 均为可导函数,则复合函数 y = f [ g ( h ( x ) ) ] y = f[g(h(x))] y=f[g(h(x))] 的导数为:
    d y d x = d y d u ⋅ d u d v ⋅ d v d x \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dv} \cdot \frac{dv}{dx} dxdy=dudydvdudxdv
  2. 应用链式法则的核心是“拆分复合关系”:明确复合函数的外层函数、内层函数(中间变量),从外层到内层逐步求导并相乘,避免遗漏中间变量的导数。

2. 积分

2.1 积分的基本概念

积分是微分的逆运算,主要分为不定积分定积分两类:

  • 不定积分:求“已知导函数的所有原函数”,结果是一个含任意常数的函数族;
  • 定积分:求“函数在某一区间上的累积效应”(如曲边梯形面积),结果是一个确定的数值(在被积函数可积的前提下)。

2.2 不定积分的定义与基本公式

2.2.1 不定积分的定义

设函数 F ( x ) F(x) F(x) f ( x ) f(x) f(x) 在区间 I I I 上的一个原函数(即 F ′ ( x ) = f ( x ) F'(x) = f(x) F(x)=f(x) 对任意 x ∈ I x \in I xI 成立),则 f ( x ) f(x) f(x) 在区间 I I I 上的所有原函数 F ( x ) + C F(x) + C F(x)+C C C C 为任意常数)称为 f ( x ) f(x) f(x) 的不定积分,记作:
∫ f ( x )   d x = F ( x ) + C \int f(x) \, dx = F(x) + C f(x)dx=F(x)+C
其中, f ( x ) f(x) f(x) 称为被积函数 x x x 称为积分变量 f ( x ) d x f(x)dx f(x)dx 称为被积表达式 C C C 称为积分常数,符号“ ∫ \int ”称为积分号。

2.2.2 基本不定积分公式

基本不定积分公式直接由基本初等函数的导数公式逆推得出,是积分运算的基础:

  1. ∫ C   d x = C x + C 1 \int C \, dx = Cx + C_1 Cdx=Cx+C1 C C C 为常数, C 1 C_1 C1 为积分常数,下同)
  2. ∫ x μ   d x = x μ + 1 μ + 1 + C \int x^\mu \, dx = \frac{x^{\mu + 1}}{\mu + 1} + C xμdx=μ+1xμ+1+C μ ≠ − 1 \mu \neq -1 μ=1 μ \mu μ 为实数)
  3. ∫ 1 x   d x = ln ⁡ ∣ x ∣ + C \int \frac{1}{x} \, dx = \ln|x| + C x1dx=lnx+C x ≠ 0 x \neq 0 x=0,绝对值保证定义域覆盖正负区间)
  4. ∫ 1 1 + x 2   d x = arctan ⁡ x + C \int \frac{1}{1 + x^2} \, dx = \arctan x + C 1+x21dx=arctanx+C(或 − arccot   x + C -\text{arccot}\,x + C arccotx+C,因原函数不唯一)
  5. ∫ 1 1 − x 2   d x = arcsin ⁡ x + C \int \frac{1}{\sqrt{1 - x^2}} \, dx = \arcsin x + C 1x2 1dx=arcsinx+C(或 − arccos ⁡ x + C -\arccos x + C arccosx+C,原函数不唯一)
  6. ∫ cos ⁡ x   d x = sin ⁡ x + C \int \cos x \, dx = \sin x + C cosxdx=sinx+C
  7. ∫ sin ⁡ x   d x = − cos ⁡ x + C \int \sin x \, dx = -\cos x + C sinxdx=cosx+C
  8. ∫ sec ⁡ 2 x   d x = tan ⁡ x + C \int \sec^2 x \, dx = \tan x + C sec2xdx=tanx+C sec ⁡ 2 x = 1 cos ⁡ 2 x \sec^2 x = \frac{1}{\cos^2 x} sec2x=cos2x1,对应 tan ⁡ x \tan x tanx 的导数)
  9. ∫ csc ⁡ 2 x   d x = − cot ⁡ x + C \int \csc^2 x \, dx = -\cot x + C csc2xdx=cotx+C csc ⁡ 2 x = 1 sin ⁡ 2 x \csc^2 x = \frac{1}{\sin^2 x} csc2x=sin2x1,对应 cot ⁡ x \cot x cotx 的导数)
  10. ∫ sec ⁡ x tan ⁡ x   d x = sec ⁡ x + C \int \sec x \tan x \, dx = \sec x + C secxtanxdx=secx+C(对应 sec ⁡ x \sec x secx 的导数)
  11. ∫ csc ⁡ x cot ⁡ x   d x = − csc ⁡ x + C \int \csc x \cot x \, dx = -\csc x + C cscxcotxdx=cscx+C(对应 csc ⁡ x \csc x cscx 的导数)
  12. ∫ e x   d x = e x + C \int e^x \, dx = e^x + C exdx=ex+C(自然指数函数的积分等于自身)
  13. ∫ a x   d x = a x ln ⁡ a + C \int a^x \, dx = \frac{a^x}{\ln a} + C axdx=lnaax+C a > 0 a > 0 a>0 a ≠ 1 a \neq 1 a=1,对应指数函数的导数逆推)

2.3 定积分的定义与几何意义

2.3.1 定积分的定义

设函数 f ( x ) f(x) f(x) 在闭区间 [ a , b ] [a, b] [a,b] 上有界,将 [ a , b ] [a, b] [a,b] 任意分成 n n n 个小区间 [ x 0 , x 1 ] , [ x 1 , x 2 ] , … , [ x n − 1 , x n ] [x_0, x_1], [x_1, x_2], \dots, [x_{n-1}, x_n] [x0,x1],[x1,x2],,[xn1,xn](其中 x 0 = a x_0 = a x0=a x n = b x_n = b xn=b),记每个小区间的长度为 Δ x i = x i − x i − 1 \Delta x_i = x_i - x_{i-1} Δxi=xixi1 i = 1 , 2 , … , n i = 1, 2, \dots, n i=1,2,,n),在每个小区间 [ x i − 1 , x i ] [x_{i-1}, x_i] [xi1,xi] 上任取一点 ξ i \xi_i ξi x i − 1 ≤ ξ i ≤ x i x_{i-1} \leq \xi_i \leq x_i xi1ξixi),作和式 S n = ∑ i = 1 n f ( ξ i ) Δ x i S_n = \sum_{i=1}^n f(\xi_i) \Delta x_i Sn=i=1nf(ξi)Δxi(称为黎曼和)。

若当 λ = max ⁡ { Δ x 1 , Δ x 2 , … , Δ x n } → 0 \lambda = \max\{\Delta x_1, \Delta x_2, \dots, \Delta x_n\} \to 0 λ=max{Δx1,Δx2,,Δxn}0 时, S n S_n Sn 的极限存在(且与区间分法、 ξ i \xi_i ξi 的取法无关),则称 f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b]黎曼可积,该极限值称为 f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b] 上的定积分,记作:

∫ a b f ( x )   d x = lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i ) Δ x i \int_a^b f(x) \, dx = \lim_{\lambda \to 0} \sum_{i=1}^n f(\xi_i) \Delta x_i abf(x)dx=λ0limi=1nf(ξi)Δxi

其中, [ a , b ] [a, b] [a,b] 称为积分区间 a a a 称为积分下限 b b b 称为积分上限

2.3.2 定积分的几何意义
  • 若在 [ a , b ] [a, b] [a,b] f ( x ) ≥ 0 f(x) \geq 0 f(x)0,则定积分 ∫ a b f ( x )   d x \int_a^b f(x) \, dx abf(x)dx 表示由曲线 y = f ( x ) y = f(x) y=f(x)、直线 x = a x = a x=a x = b x = b x=b x x x 轴围成的曲边梯形的面积
  • 若在 [ a , b ] [a, b] [a,b] f ( x ) ≤ 0 f(x) \leq 0 f(x)0,则定积分 ∫ a b f ( x )   d x \int_a^b f(x) \, dx abf(x)dx 表示上述曲边梯形面积的负值
  • f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b] 上有正有负,则定积分 ∫ a b f ( x )   d x \int_a^b f(x) \, dx abf(x)dx 表示曲边梯形在 x x x 轴上方的面积与下方的面积的代数和

2.4 积分的基本运算法则

积分的运算法则与导数运算法则对应,主要包括线性运算法则:

  1. 常数因子法则 ∫ k f ( x )   d x = k ∫ f ( x )   d x \int k f(x) \, dx = k \int f(x) \, dx kf(x)dx=kf(x)dx k k k 为常数且 k ≠ 0 k \neq 0 k=0
    含义:被积函数中不为零的常数因子可以提到积分号外面。

  2. 和差法则 ∫ [ f ( x ) ± g ( x ) ]   d x = ∫ f ( x )   d x ± ∫ g ( x )   d x \int [f(x) \pm g(x)] \, dx = \int f(x) \, dx \pm \int g(x) \, dx [f(x)±g(x)]dx=f(x)dx±g(x)dx
    含义:两个函数和(或差)的不定积分,等于这两个函数的不定积分的和(或差)。

说明:

上述法则对定积分同样成立,即:

  • ∫ a b k f ( x )   d x = k ∫ a b f ( x )   d x \int_a^b k f(x) \, dx = k \int_a^b f(x) \, dx abkf(x)dx=kabf(x)dx k k k 为常数且 k ≠ 0 k \neq 0 k=0
  • ∫ a b [ f ( x ) ± g ( x ) ]   d x = ∫ a b f ( x )   d x ± ∫ a b g ( x )   d x \int_a^b [f(x) \pm g(x)] \, dx = \int_a^b f(x) \, dx \pm \int_a^b g(x) \, dx ab[f(x)±g(x)]dx=abf(x)dx±abg(x)dx

定积分还满足区间可加性:对任意常数 c c c,有 ∫ a b f ( x )   d x = ∫ a c f ( x )   d x + ∫ c b f ( x )   d x \int_a^b f(x) \, dx = \int_a^c f(x) \, dx + \int_c^b f(x) \, dx abf(x)dx=acf(x)dx+cbf(x)dx(无论 a , b , c a, b, c a,b,c 的大小关系如何,只要 f ( x ) f(x) f(x) 在相应区间上可积)。


via:

基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究(Matlab代码实现)内容概要:本文围绕“基于数据驱动的Koopman算子的递归神经网络模型线性化”展开,旨在研究纳米定位系统的预测控制方法。通过结合数据驱动技术与Koopman算子理论,将非线性系统动态近似为高维线性系统,进而利用递归神经网络(RNN)建模并实现系统行为的精确预测。文中详细阐述了模型构建流程、线性化策略及在预测控制中的集成应用,并提供了完整的Matlab代码实现,便于科研人员复现实验、优化算法并拓展至其他精密控制系统。该方法有效提升了纳米级定位系统的控制精度与动态响应性能。; 适合人群:具备自动控制、机器学习或信号处理背景,熟悉Matlab编程,从事精密仪器控制、智能制造或先进控制算法研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①实现非线性动态系统的数据驱动线性化建模;②提升纳米定位平台的轨迹跟踪与预测控制性能;③为高精度控制系统提供可复现的Koopman-RNN融合解决方案; 阅读建议:建议结合Matlab代码逐段理解算法实现细节,重点关注Koopman观测矩阵构造、RNN训练流程与模型预测控制器(MPC)的集成方式,鼓励在实际硬件平台上验证并调整参数以适应具体应用场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值