【机器学习】LDA线性判别分析

LDA是一种经典的线性学习方法,旨在通过投影让同类样本点尽可能接近,异类样本点尽可能远离。它基于Fisher判别思想,求解最大类间散度与最小类内散度的比值。LDA不仅可以用于二分类问题,还可以推广到多分类任务,是一种监督降维技术。LDA与PCA的主要区别在于LDA利用类别信息,适用于有监督的降维和分类,而PCA是无监督的,并寻找样本点投影的最大方差方向。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【机器学习】LDA线性判别分析

1. LDA的基本思想

2. LDA求解方法

3. LDA推广到多分类

4. LDA算法流程

5. LDA和PCA对比

【附录1】瑞利商与广义瑞利商

        线性判别分析 (Linear Discriminant Analysis,LDA)是一种经典的线性学习方法,在二分类问题上因为最早由[Fisher,1936]提出,亦称"Fisher判别分析"。(严格说来LDA与Fisher判别分析稍有不同,LDA假设了各类样本的协方差矩阵相同且满秩。

1. LDA的基本思想

        LDA的基本思想是: 给定训练样例集,设法将样例投影到一条直线上,使得同类样例的投影点尽可能接近、异类样例的投影点尽可能远离,在对新样本进行分类时,将其投影到同样的这条直线上,再根据投影点的位置来确定新样本的类别。图3.3给出了一个二维示意图。

        

2. LDA求解方法

       问:LDA最终要求什么?

        求投影空间W。 假设要投影到d维空间,W为这最大的d个特征值对应的特征向量张成的矩阵。所以问题转化为求解特征向量w

        求解过程如下:

        给定数据集,,令Xi、цi、∑i分别表示第i∈{0,1}类示例的集合、均值向量、协方差矩阵。

        若将数据投影到直线w上,则两类样本的中心在直线上的投影分别为;若将所有样本点都投影到直线上,则两类样本的协方差分别为

        由于直线是一维空间,因此

        本着同类样例的投影点尽可能接近、异类样例的投影点尽可能远离的原则,欲使同类样例的投影点尽可能接近,可以让同类样例投影点的协方差尽可能小,即尽可能小;而欲使异类样例的投影点尽可能远离,可以让类中心之间的距离尽可能大,即尽可能大。同时考虑二者,则可得到欲最大化的目标

        

        定义"类内散度矩阵"

        

        以及"类间散度矩阵"

        

        则式 (3.32)可重写为

         

        这就是LDA欲最大化的目标,即Sw与Sb的"广义瑞利商" (Rayleigh)。根据广义瑞利商的性质,我们知道我们的J(w)最大值为矩阵的最大特征值,而对应的w的最大特征值对应的特征向量!(具体的瑞利商的知识见【附录1】)

    

    如何求解w呢?(w向量决定投影方向)

        如何确定ω呢? 注意到式(3.35)的分子和分母都是关于ω的二次项,因此式(3.35)的解与ω的长度无关,只与其方向有关。(why? 二次项的性质,若w是一个解,则对于任意常数α,αw也是式(3.35)的解.)

        不失一般性,令,则式(3.35)等价于

         

    由拉格朗日乘子法,上式等价于

        

     其中λ是拉格朗日乘子。注意到的方向恒为,不妨令

        

    代入式 (3.37) 即得

    

 3. LDA推广到多分类

        如何将LDA推广到多分类任务中?

        假定存在N个类,且第i类示例数为,我们先定义"全局散度矩阵"

        

        其中μ是所有示例的均值向量。将类内散度矩阵重定义为每个类别的散度矩阵之和,即:

        

        其中,

            

            例如:三类问题如下直观图所示:

                

            显然,多分类 LDA 可以有多种实现方法:使用 三者中的任何两个即可。

            常见的一种实现是采用优化目标:

            

            其中的tr()为矩阵的迹,一个n×n的对角矩阵A的主对角线(从左上方至右下方的对角线)上各个元素的总和被称为矩阵A的迹(或迹数),一般记作tr(A)。 

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值