卡尔曼滤波推导

##概述
推导卡尔曼滤波算法中的卡尔曼增益表达式
##模型
状态方程:
xk+1=Φk+1xk+wk x_{k+1}= \Phi_{k+1}x_k +w_kxk+1=Φk+1xk+wk
测量方程:
zk=Hkxk+vkz_k = H_k x_k+v_kzk=Hkxk+vk
并假定:
E[x0]=μ0xE[wk]=0 ∀kE[vk]=0 ∀kcov{ wk,wj}=Qkδkjcov{ vk,vj}=Rkδkjcov{ x0,x0}=P0cov{ wk,vj}=0 ∀kcov{ x0,wk}=0 ∀kcov{ x0,vj}=0 ∀k \begin{aligned} \\ & E[x_0] = \mu_0^x\\ & E[w_k] =0\ \forall k \\ & E[v_k] =0\ \forall k \\ & cov\{w_k,w_j\}=Q_k\delta_{kj}\\ & cov\{v_k,v_j\}=R_k\delta_{kj}\\ & cov\{x_0,x_0\}=P_0\\ & cov\{w_k,v_j\}=0 \ \forall k\\ & cov\{x_0,w_k\}=0 \ \forall k\\ & cov\{x_0,v_j\}=0 \ \forall k\\ \end{aligned} \\ E[x0]=μ0xE[wk]=0 kE[vk]=0 kcov{ wk,wj}=Qkδkjcov{ vk,vj}=Rkδkjcov{ x0,x0}=P0cov{ wk,vj}=0 kcov{ x0,wk}=0 kcov{ x0,vj}=0 k
##推导
根据上述条件将推导以下方程:

  1. 状态推断
    x^k+1−=Φk+1x^k \hat{x}_{k+1}^- = \Phi_{k+1}\hat{x}_kx^k+1=Φk+1x^k
  2. 协方差推断
    Pk+1−=Φk+1PkΦk+1T+QkP_{k+1}^- =\Phi_{k+1}P_k\Phi_{k+1}^T+Q_kPk+1=Φk+1PkΦk+1T+Qk
  3. 卡尔曼增益计算
    Kk+1=Pk+1−Hk+1T(Hk+1Pk+1−Hk+1T+Rk+1)−1K_{k+1} = P_{k+1}^-H_{k+1}^T( H_{k+1}P_{k+1}^-H_{k+1}^T+R_{k+1}) ^{-1}Kk+1=Pk+1Hk+1T(Hk+1Pk+1Hk+1T+Rk+1)1
  4. 状态更新
    x^k+1=x^k+1−+Kk+1(zk+1−Hk+1x^k+1−)\hat{x}_{k+1} =\hat{x}_{k+1}^- + K_{k+1} ( z_{k+1} - H_{k+1}\hat{x}_{k+1}^-) x^k+1=x^k+1+Kk+1(zk+1Hk+1x^k+1)
  5. 协方差更新
    Pk+1=Pk+1−−Kk+1Hk+1Pk+1− P_{k+1} = P_{k+1}^- - K_{k+1}H_{k+1}P_{k+1}^-Pk+1=Pk+1Kk+1Hk+1Pk+1
    令:在k+1步可以得到一个k步的无偏差估计,误差项x~k=x^k−xk\widetilde{x}_k = \hat{x}_k -x_kx k=x^k
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值