##概述
推导卡尔曼滤波算法中的卡尔曼增益表达式
##模型
状态方程:
xk+1=Φk+1xk+wk x_{k+1}= \Phi_{k+1}x_k +w_kxk+1=Φk+1xk+wk
测量方程:
zk=Hkxk+vkz_k = H_k x_k+v_kzk=Hkxk+vk
并假定:
E[x0]=μ0xE[wk]=0 ∀kE[vk]=0 ∀kcov{
wk,wj}=Qkδkjcov{
vk,vj}=Rkδkjcov{
x0,x0}=P0cov{
wk,vj}=0 ∀kcov{
x0,wk}=0 ∀kcov{
x0,vj}=0 ∀k \begin{aligned} \\ & E[x_0] = \mu_0^x\\ & E[w_k] =0\ \forall k \\ & E[v_k] =0\ \forall k \\ & cov\{w_k,w_j\}=Q_k\delta_{kj}\\ & cov\{v_k,v_j\}=R_k\delta_{kj}\\ & cov\{x_0,x_0\}=P_0\\ & cov\{w_k,v_j\}=0 \ \forall k\\ & cov\{x_0,w_k\}=0 \ \forall k\\ & cov\{x_0,v_j\}=0 \ \forall k\\ \end{aligned} \\ E[x0]=μ0xE[wk]=0 ∀kE[vk]=0 ∀kcov{
wk,wj}=Qkδkjcov{
vk,vj}=Rkδkjcov{
x0,x0}=P0cov{
wk,vj}=0 ∀kcov{
x0,wk}=0 ∀kcov{
x0,vj}=0 ∀k
##推导
根据上述条件将推导以下方程:
- 状态推断
x^k+1−=Φk+1x^k \hat{x}_{k+1}^- = \Phi_{k+1}\hat{x}_kx^k+1−=Φk+1x^k - 协方差推断
Pk+1−=Φk+1PkΦk+1T+QkP_{k+1}^- =\Phi_{k+1}P_k\Phi_{k+1}^T+Q_kPk+1−=Φk+1PkΦk+1T+Qk - 卡尔曼增益计算
Kk+1=Pk+1−Hk+1T(Hk+1Pk+1−Hk+1T+Rk+1)−1K_{k+1} = P_{k+1}^-H_{k+1}^T( H_{k+1}P_{k+1}^-H_{k+1}^T+R_{k+1}) ^{-1}Kk+1=Pk+1−Hk+1T(Hk+1Pk+1−Hk+1T+Rk+1)−1 - 状态更新
x^k+1=x^k+1−+Kk+1(zk+1−Hk+1x^k+1−)\hat{x}_{k+1} =\hat{x}_{k+1}^- + K_{k+1} ( z_{k+1} - H_{k+1}\hat{x}_{k+1}^-) x^k+1=x^k+1−+Kk+1(zk+1−Hk+1x^k+1−) - 协方差更新
Pk+1=Pk+1−−Kk+1Hk+1Pk+1− P_{k+1} = P_{k+1}^- - K_{k+1}H_{k+1}P_{k+1}^-Pk+1=Pk+1−−Kk+1Hk+1Pk+1−
令:在k+1步可以得到一个k步的无偏差估计,误差项x~k=x^k−xk\widetilde{x}_k = \hat{x}_k -x_kx k=x^k−