道路网络中概率路径查询的高效算法解析
在道路网络分析中,概率路径查询是一个重要的研究领域,它涉及到在不确定的道路网络中寻找满足特定条件的路径。本文将详细介绍概率路径查询的相关计算方法和搜索算法,包括概率计算、深度优先搜索方法以及 P* 最佳优先搜索方法。
1. 概率计算
在计算路径 P 的分布时,总共需要 m - 1 个步骤。其复杂度分析如下:在近似计算中,最多会构建 2t 个桶。因此,从 fPi 和 fei(x)(i ≥ 2)计算近似的 fPi+1(x) 需要 O(t × |wei|) 的时间,计算 fm+1(x) 的总体复杂度为 O(t ∑2≤i≤m |wei|)。
1.1 估计 l - 权重概率
路径的 l - 权重概率也可以通过采样来估计。对于路径 P = ⟨v1, …, vm+1⟩,定义随机变量 XP 作为事件 wP ≤ l 的指示变量。若 wP ≤ l,则 XP = 1;否则,XP = 0。XP 的期望 E[XP] = FP(l)。
为了估计 E[XP],我们进行有放回的均匀采样。每个样本单元 s 是路径权重的一个观测值,生成过程如下:
1. 初始时,将 s 设为 0。
2. 对于路径 P 中的边 e1,根据概率分布 fe1(x) 在 we1 中选择一个值 x1。
3. 对于路径 P 中的每条边 ei(2 ≤ i ≤ m),根据条件概率分布 fei|ei−1(x|xi−1) 在 wei 中选择一个值 xi,并将其加到 s 上。
4. 选择完所有边的权重值后,将 s 与 l 进行比较。若 s ≤ l,则样本 s 的指示变量 XP 设为 1;否则设为 0。
重复上述过程,直到获得