能源转换中基于近似线性化的控制及永磁直线同步发电机非线性控制
1. 分布式海洋涡轮发电机控制
在分布式海洋涡轮发电机的控制问题中,首先涉及到雅可比矩阵元素的计算。对于特定函数(f_{14}),其偏导数计算如下:
- (\frac{\partial f_{14}}{\partial x_{12}} = 1)
- (\frac{\partial f_{14}}{\partial x_{13}} = \frac{1}{J_{3g}}(-K_{31})\frac{n_{3g}}{n_{3t}})
- (\frac{\partial f_{14}}{\partial x_{14}} = \frac{1}{J_{3g}}(-D_{3g}))
- (\frac{\partial f_{14}}{\partial x_{15}} = \frac{1}{J_{3g}}{-\omega_0[G_{332}x_{15} + (x_9G_{31}\cos(x_{11} - x_1 - a_{31}) + x_{10}G_{32}\cos(x_{11} - x_6 - a_{32}))]})
对于雅可比矩阵(A = \nabla_x[f(x)]| {(x^ ,u^ )})的第十五行,各偏导数分别为:
- (\frac{\partial f {15}}{\partial x_1} = 0),(\frac{\partial f_{15}}{\partial x_2} = 0),(\frac{\partial f_{15}}{\partial x_3} = 0),(\frac{\partial f_{15}}{\partial x_4}
超级会员免费看
订阅专栏 解锁全文
2977

被折叠的 条评论
为什么被折叠?



