pytorch中torch.nn.functional.normalize、nn.norm和LayerNorm计算中的区别

torch.nn.functional.normalize

计算方式

v = v max ⁡ ( ∥ v ∥ p , ϵ ) \mathbf{v} = \frac{\mathbf{v}}{\max\left(\|\mathbf{v}\|_p, \epsilon\right)} v=max(vp,ϵ)v

pytorch例子

a = torch.arange(12).reshape(3,4).float()
torch.nn.functional.normalize(a, dim=-1)
'''
tensor([[0.0000, 0.2673, 0.5345, 0.8018],
        [0.3563, 0.4454, 0.5345, 0.6236],
        [0.4182, 0.4704, 0.5227, 0.5750]])
'''

这样除一下就相等了

a = torch.arange(12).reshape(3,4).float()
torch.nn.functional.normalize(a, dim=-1)
'''
tensor([[0.0000, 0.2673, 0.5345, 0.8018],
        [0.3563, 0.4454, 0.5345, 0.6236],
        [0.4182, 0.4704, 0.5227, 0.5750]])
'''
a / a.norm(dim=-1,keepdim=True)
'''
tensor([[0.0000, 0.2673, 0.5345, 0.8018],
        [0.3563, 0.4454, 0.5345, 0.6236],
        [0.4182, 0.4704, 0.5227, 0.5750]])
'''

nn.norm

计算方式

可以通过p参数指定是pro(Frobenium norm,其实就是平方和开根号)还是nuc(叫nuclear norm,其实就是SVD分解的奇异值,也就是Singular Value)

pytorch例子

a = torch.arange(12).reshape(3,4).float()
a.norm(dim=-1, keepdim=True)
'''
tensor([[ 3.7417],
        [11.2250],
        [19.1311]])
'''

LayerNorm

计算方式

分子减均值,分母对方差开根号,更多细节参考 超细节的BatchNorm/BN/LayerNorm/LN/SyncLN/ShuffleBN/RMSNorm知识点

pytorch例子

a = torch.arange(12).reshape(3,4).float()
(a - a.mean(dim=-1, keepdims=True)) / torch.sqrt(a.var(dim=-1, keepdims=True, correction=0))
'''
tensor([[-1.3416, -0.4472,  0.4472,  1.3416],
        [-1.3416, -0.4472,  0.4472,  1.3416],
        [-1.3416, -0.4472,  0.4472,  1.3416]])
'''
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值