Codeforces Round #311 (Div. 2) D

本文探讨了一种算法问题,即如何通过最少的边添加使无向图包含奇数长度的环,并统计可行方案的数量。利用二分图理论进行染色判断,通过递归深度优先搜索实现分类讨论。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Vitaly and Cycle

        无向图,n个点m条边。问至少添加几条边,使得图有奇环(不能是单个点),有几种添加方法。

        这里用到了一个很重要的定理:二分图没有奇环。给图染色判断是不是二分图。然后分类讨论。

#include <bits/stdc++.h>    
  
using namespace std;    

#define ll long long
const int maxn=100010;

ll n,m;
vector<int> E[maxn];
int color[maxn];
bool flag;
int tot;
ll part1,part2;

void dfs(int u,int pre){
	tot++;
	color[u]=!color[pre];
	if(color[u]==1)part1++;
	else part2++;
	for(int i=0;i<E[u].size();i++){
		int v=E[u][i];
		if(v==pre)continue;
		if(-1!=color[v]){
			if(color[v]==color[u]){
				flag=1;
				return;
			}
		}else{
			dfs(v,u);
		}
	}
}

int main(){
	memset(color,-1,sizeof(color));
	color[0]=0;
	cin>>n>>m;
	
	for(int i=1;i<=m;i++){
		int u,v;
		scanf("%d%d",&u,&v);
		E[u].push_back(v);
		E[v].push_back(u);
	}
	
	ll ans=0,ans2=0;
	for(int i=1;i<=n;i++){
		tot=0;
		part1=part2=0;
		if(-1==color[i]){
			dfs(i,0);
		}
		if(tot>2){
			ans+=part1*(part1-1)/2;
			ans+=part2*(part2-1)/2;
		}else if(tot==2){
			ans2+=(n-2);
		}
		
	}
	
	if(flag){
		printf("0 1\n");
	}else{
		if(m==0){
			printf("3 %I64d\n",n*(n-1)*(n-2)/6);
		}else{
			if(ans){
				printf("1 %I64d\n",ans);
			}else{
				printf("2 %I64d\n",ans2);
			}
		}
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值