基于BP神经网络的金融序列预测matlab仿真

BP神经网络在金融序列预测中的应用:MATLAB实现与实验结果
本文介绍了使用MATLAB2022A版本的BP神经网络进行金融序列预测的方法,包括程序功能描述、测试结果展示、核心代码以及算法原理。通过训练网络,预测股票价格等金融数据,并展示了预测误差和训练曲线。

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

5.完整程序


1.程序功能描述

基于BP神经网络的金融序列预测,仿真输出预测结果,预测误差以及训练曲线。

2.测试软件版本以及运行结果展示

MATLAB2022A版本运行

3.核心程序

.......................................................................
s=sim(net1,px);% 使用训练好的网络对训练集进行模拟




% 使用训练好的网络对测试集进行模拟
s2=sim(net1,pX);


% 计算预测误差
er=py-s;


figure
plot(py,'b');%输出实际值
hold on
plot(s,'r.');%输出训练值
hold on
plot(1901:1950,s2,'kx');%输出预测值

title('神经网络训练图');

pp=sim(net1,pX);

legend('实际目标值','网络拟合值');

% 输出并转换预测值并计算误差
disp('实际值')
pY
disp('预测值')
pp=minp(1)+(maxp(1)-minp(1))*(pp+1)/2
disp('预测产生的误差')
pY-pp
% 绘制神经网络预测结果对比图
figure;
plot(pY,'g-');
hold on
plot(pp,'m*');

title('神经网络预测图');
legend('实际目标值','预测值')
% 绘制神经网络训练误差曲线图
figure;
plot(er,'m');
title('神经网络训练误差曲线');
04_002m

4.本算法原理

       基于反向传播(Backpropagation, BP)神经网络的金融序列预测是一种利用人工神经网络模型对金融市场中的时间序列数据进行建模与预测的方法。BP神经网络是一种多层前馈神经网络,其主要包含输入层、隐藏层和输出层。其训练过程依赖于误差反向传播算法,以最小化实际输出与期望输出之间的误差。

       在金融序列预测中,BP神经网络可用于预测股票价格、汇率、交易量等金融时间序列数据。首先,将历史数据预处理为合适格式作为输入,然后通过训练BP神经网络,让其学习数据的内在规律,并对未来趋势进行预测。

5.完整程序

VVV

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

软件算法开发

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值