Description
给定序列 a=(a1,a2,⋯ ,an)a=(a_1,a_2,\cdots,a_n)a=(a1,a2,⋯,an),有 mmm 个操作分两种:
- chmax(l,r,k)\operatorname{chmax}(l,r,k)chmax(l,r,k):对每个 i∈[l,r]i \in [l,r]i∈[l,r] 执行 ai←max(ai,k)a_i\gets\max(a_i,k)ai←max(ai,k).
- query(l,r,k)\operatorname{query}(l,r,k)query(l,r,k):用石堆 al⋯ra_{l\cdots r}al⋯r 和一堆 kkk 个石子玩
Nim,求先手第一次取完石子后,后手必败的操作方案数.
Limitations
1≤n,m≤2×1051 \le n,m \le 2\times 10^51≤n,m≤2×105
0≤ai,k<2300 \le a_i,k < 2^{30}0≤ai,k<230
1≤l≤r≤n1 \le l \le r \le n1≤l≤r≤n
3s,256MB3\text{s},256\text{MB}3s,256MB
Solution
考虑 query\operatorname{query}query,显然要维护 xor\operatorname{xor}xor 和用来判断先手是否必胜.
考虑如何求方案数,将 kkk 算入,设 sss 为这局游戏的 SG 值,若先手必胜则策略显然为 ai←aixorsa_i \gets a_i \operatorname{xor} sai←aixors,所以把问题转化成求 ∑[ai>(aixors)]\sum [a_i > (a_i \operatorname{xor} s)]∑[ai>(aixors)].
异或本质是不进位加法,若 highbit(s)=highbit(ai)\operatorname{highbit}(s)=\operatorname{highbit}(a_i)highbit(s)=highbit(ai),则 ai>(aixors)a_i > (a_i \operatorname{xor} s)ai>(aixors) 必成立.
然后需要一个 ds,支持区间 chmax\operatorname{chmax}chmax,求区间 xor\operatorname{xor}xor 和,求区间内第 kkk 位为 111 的数个数,用吉司机线段树即可,注意 ∞\infty∞ 要开够.
时间复杂度 O(mlognlogV)O(m\log n\log V)O(mlognlogV).
Code
4.64KB,0.55s,57.78MB (maximum, C++ 20 with O2)4.64\text{KB},0.55\text{s},57.78\text{MB}\;\texttt{(maximum, C++ 20 with O2)}4.64KB,0.55s,57.78MB(maximum, C++ 20 with O2)
// Problem: P9631 [ICPC2020 Nanjing R] Just Another Game of Stones
// Contest: Luogu
// URL: https://www.luogu.com.cn/problem/P9631
// Memory Limit: 256 MB
// Time Limit: 3000 ms
//
// Powered by CP Editor (https://cpeditor.org)
#include <bits/stdc++.h>
using namespace std;
using i64 = long long;
using ui64 = unsigned long long;
using i128 = __int128;
using ui128 = unsigned __int128;
using f4 = float;
using f8 = double;
using f16 = long double;
template<class T>
bool chmax(T &a, const T &b){
if(a < b){ a = b; return true; }
return false;
}
template<class T>
bool chmin(T &a, const T &b){
if(a > b){ a = b; return true; }
return false;
}
constexpr int inf = 2147483647;
namespace seg_tree {
struct Node {
int l, r;
int min, sec, cnt, tag, sum;
array<int, 30> bits;
};
inline int ls(int u) { return 2 * u + 1; }
inline int rs(int u) { return 2 * u + 2; }
struct SegTree {
vector<Node> tr;
inline SegTree() {}
inline SegTree(const vector<int>& a) {
const int n = a.size();
tr.resize(n << 1);
build(0, 0, n - 1, a);
}
inline void pushup(int u, int mid) {
tr[u].sum = tr[ls(mid)].sum ^ tr[rs(mid)].sum;
if (tr[ls(mid)].min == tr[rs(mid)].min) {
tr[u].min = tr[ls(mid)].min;
tr[u].cnt = tr[ls(mid)].cnt + tr[rs(mid)].cnt;
tr[u].sec = min(tr[ls(mid)].sec, tr[rs(mid)].sec);
}
else if (tr[ls(mid)].min < tr[rs(mid)].min) {
tr[u].min = tr[ls(mid)].min;
tr[u].cnt = tr[ls(mid)].cnt;
tr[u].sec = min(tr[ls(mid)].sec, tr[rs(mid)].min);
}
else {
tr[u].min = tr[rs(mid)].min;
tr[u].cnt = tr[rs(mid)].cnt;
tr[u].sec = min(tr[ls(mid)].min, tr[rs(mid)].sec);
}
for (int i = 0; i < 30; i++) {
tr[u].bits[i] = tr[ls(mid)].bits[i] + tr[rs(mid)].bits[i];
}
}
inline void build(int u, int l, int r, const vector<int>& a) {
tr[u].l = l;
tr[u].r = r;
tr[u].tag = -1;
if (l == r) {
tr[u].min = tr[u].sum = a[l];
tr[u].sec = inf;
tr[u].cnt = 1;
for (int i = 0; i < 30; i++) tr[u].bits[i] = (a[l] >> i & 1);
return;
}
const int mid = (l + r) >> 1;
build(ls(mid), l, mid, a);
build(rs(mid), mid + 1, r, a);
pushup(u, mid);
}
inline void apply(int u, int v) {
if (tr[u].min >= v) return;
tr[u].sum ^= (tr[u].cnt & 1) * (tr[u].min ^ v);
for (int i = 0; i < 30; i++)
tr[u].bits[i] += ((v >> i & 1) - (tr[u].min >> i & 1)) * tr[u].cnt;
tr[u].min = tr[u].tag = v;
}
inline void pushdown(int u, int mid) {
if (~tr[u].tag) {
apply(ls(mid), tr[u].tag);
apply(rs(mid), tr[u].tag);
tr[u].tag = -1;
}
}
inline void update(int u, int l, int r, int v) {
if (tr[u].min >= v) return;
if (l <= tr[u].l && tr[u].r <= r && tr[u].sec > v) return apply(u, v);
const int mid = (tr[u].l + tr[u].r) >> 1;
pushdown(u, mid);
if (l <= mid) update(ls(mid), l, r, v);
if (r > mid) update(rs(mid), l, r, v);
pushup(u, mid);
}
inline int qsum(int u, int l, int r) {
if (l <= tr[u].l && tr[u].r <= r) return tr[u].sum;
const int mid = (tr[u].l + tr[u].r) >> 1;
pushdown(u, mid);
if (r <= mid) return qsum(ls(mid), l, r);
else if (l > mid) return qsum(rs(mid), l, r);
else return qsum(ls(mid), l, r) ^ qsum(rs(mid), l, r);
}
inline int qbit(int u, int l, int r, int k) {
if (l <= tr[u].l && tr[u].r <= r) return tr[u].bits[k];
const int mid = (tr[u].l + tr[u].r) >> 1;
pushdown(u, mid);
if (r <= mid) return qbit(ls(mid), l, r, k);
else if (l > mid) return qbit(rs(mid), l, r, k);
else return qbit(ls(mid), l, r, k) + qbit(rs(mid), l, r, k);
}
inline void range_chmax(int l, int r, int v) { update(0, l, r, v); }
inline int range_xorsum(int l, int r) { return qsum(0, l, r); }
inline int range_bitsum(int l, int r, int k) { return qbit(0, l, r, k); }
};
}
using seg_tree::SegTree;
signed main() {
ios::sync_with_stdio(0);
cin.tie(0), cout.tie(0);
int n, m;
scanf("%d %d", &n, &m);
vector<int> a(n);
for (int i = 0; i < n; i++) scanf("%d", &a[i]);
SegTree sgt(a);
auto range_nim = [&](int l, int r, int x) {
int sg = sgt.range_xorsum(l, r) ^ x, bit = -1;
for (int i = 0; i < 30; i++)
if (sg >> i & 1) bit = i;
if (bit == -1) return 0;
return sgt.range_bitsum(l, r, bit) + (x >> bit & 1);
};
for (int i = 0, op, l, r, v; i < m; i++) {
scanf("%d %d %d %d", &op, &l, &r, &v), l--, r--;
if (op == 1) sgt.range_chmax(l, r, v);
else printf("%d\n", range_nim(l, r, v));
}
return 0;
}
1271

被折叠的 条评论
为什么被折叠?



