Description
给定序列 a = ( a 1 , a 2 , ⋯ , a n ) a=(a_1,a_2,\cdots,a_n) a=(a1,a2,⋯,an),有 q q q 次操作分两种:
- add ( l , r , w ) \operatorname{add}(l,r,w) add(l,r,w):对每个 i ∈ [ l , r ] i \in [l,r] i∈[l,r] 执行 a i ← a i + w a_i \gets a_i+w ai←ai+w.
- query ( l , r , c ) \operatorname{query}(l,r,c) query(l,r,c):求 ∑ i = l r [ a i ≥ c ] \sum\limits_{i=l}^r [a_i \ge c] i=l∑r[ai≥c].
Limitations
1
≤
n
≤
1
0
6
1 \le n \le 10^6
1≤n≤106
1
≤
q
≤
3000
1 \le q \le 3000
1≤q≤3000
1
≤
w
≤
1000
1 \le w \le 1000
1≤w≤1000
1
≤
a
i
,
c
≤
1
0
9
1 \le a_i,c \le 10^9
1≤ai,c≤109
1
s
,
128
MB
1 \text{s},128 \text{MB}
1s,128MB
Solution
线段树不好维护,考虑分块.
由于要快速查询,所以维护
p
i
p_i
pi 表示块内元素升序排序后的结果,查询时整块直接 lower_bound
,散块暴力.
至于区间加,就在每个块上维护懒标记
tag
\textit{tag}
tag,整块直接加在
tag
\textit{tag}
tag 上,散块直接暴力加然后重构块.
取
B
=
n
B=\sqrt{n}
B=n,时间复杂度
O
(
q
n
log
n
)
O(q\sqrt{n\log n})
O(qnlogn)
Code
2.31 KB , 536 ms , 15.72 MB (in total, C++20 with O2) 2.31\text{KB},536\text{ms},15.72\text{MB}\;\texttt{(in total, C++20 with O2)} 2.31KB,536ms,15.72MB(in total, C++20 with O2)
#include <bits/stdc++.h>
using namespace std;
using i64 = long long;
using ui64 = unsigned long long;
using i128 = __int128;
using ui128 = unsigned __int128;
using f4 = float;
using f8 = double;
using f16 = long double;
template<class T>
bool chmax(T &a, const T &b){
if(a < b){ a = b; return true; }
return false;
}
template<class T>
bool chmin(T &a, const T &b){
if(a > b){ a = b; return true; }
return false;
}
struct Block {
int n, size, blocks;
vector<int> A, P, belong, L, R, tag;
inline Block() {}
inline Block(const vector<int>& a): A(a) {
n = a.size();
size = (int)sqrt(n);
blocks = (n + size - 1) / size;
P.resize(n);
belong.resize(n);
L.resize(blocks);
R.resize(blocks);
tag.resize(blocks);
for (int i = 0; i < blocks; i++) {
L[i] = i * size;
R[i] = min(L[i] + size - 1, n - 1);
for (int j = L[i]; j <= R[i]; j++) belong[j] = i;
}
for (int i = 0; i < blocks; i++) build(i);
}
inline void build(int b) {
for (int i = L[b]; i <= R[b]; i++) {
A[i] += tag[b];
P[i] = A[i];
}
sort(P.begin() + L[b], P.begin() + R[b] + 1);
tag[b] = 0;
}
inline void add(int l, int r, int x) {
const int bl = belong[l], br = belong[r];
if (bl == br) {
for (int i = l; i <= r; i++) A[i] += x;
return build(bl);
}
for (int i = l; i <= R[bl]; i++) A[i] += x;
for (int i = L[br]; i <= r; i++) A[i] += x;
build(bl), build(br);
for (int i = bl + 1; i < br; i++) tag[i] += x;
}
inline int query(int l, int r, int x) {
const int bl = belong[l], br = belong[r];
if (bl == br) {
int ans = 0;
for (int i = l; i <= r; i++) ans += (A[i] + tag[bl] >= x);
return ans;
}
int ans = 0;
for (int i = l; i <= R[bl]; i++) ans += (A[i] + tag[bl] >= x);
for (int i = L[br]; i <= r; i++) ans += (A[i] + tag[br] >= x);
for (int i = bl + 1; i < br; i++) {
ans += R[i] + 1 - (lower_bound(P.begin() + L[i], P.begin() + R[i] + 1,
x - tag[i]) - P.begin());
}
return ans;
}
};
signed main() {
ios::sync_with_stdio(0);
cin.tie(0), cout.tie(0);
int n, m;
cin >> n >> m;
vector<int> a(n);
for (int i = 0; i < n; i++) cin >> a[i];
Block blk(a);
for (int i = 0; i < m; i++) {
char op; int l, r, x;
cin >> op >> l >> r >> x;
l--, r--;
if (op == 'M') blk.add(l, r, x);
else cout << blk.query(l, r, x) << endl;
}
return 0;
}