P2801 教主的魔法 Solution

Description

给定序列 a = ( a 1 , a 2 , ⋯   , a n ) a=(a_1,a_2,\cdots,a_n) a=(a1,a2,,an),有 q q q 次操作分两种:

  • add ⁡ ( l , r , w ) \operatorname{add}(l,r,w) add(l,r,w):对每个 i ∈ [ l , r ] i \in [l,r] i[l,r] 执行 a i ← a i + w a_i \gets a_i+w aiai+w.
  • query ⁡ ( l , r , c ) \operatorname{query}(l,r,c) query(l,r,c):求 ∑ i = l r [ a i ≥ c ] \sum\limits_{i=l}^r [a_i \ge c] i=lr[aic].

Limitations

1 ≤ n ≤ 1 0 6 1 \le n \le 10^6 1n106
1 ≤ q ≤ 3000 1 \le q \le 3000 1q3000
1 ≤ w ≤ 1000 1 \le w \le 1000 1w1000
1 ≤ a i , c ≤ 1 0 9 1 \le a_i,c \le 10^9 1ai,c109
1 s , 128 MB 1 \text{s},128 \text{MB} 1s,128MB

Solution

线段树不好维护,考虑分块.
由于要快速查询,所以维护 p i p_i pi 表示块内元素升序排序后的结果,查询时整块直接 lower_bound,散块暴力.
至于区间加,就在每个块上维护懒标记 tag \textit{tag} tag,整块直接加在 tag \textit{tag} tag 上,散块直接暴力加然后重构块.
B = n B=\sqrt{n} B=n ,时间复杂度 O ( q n log ⁡ n ) O(q\sqrt{n\log n}) O(qnlogn )

Code

2.31 KB , 536 ms , 15.72 MB    (in   total,   C++20   with   O2) 2.31\text{KB},536\text{ms},15.72\text{MB}\;\texttt{(in total, C++20 with O2)} 2.31KB,536ms,15.72MB(in total, C++20 with O2)

#include <bits/stdc++.h>
using namespace std;

using i64 = long long;
using ui64 = unsigned long long;
using i128 = __int128;
using ui128 = unsigned __int128;
using f4 = float;
using f8 = double;
using f16 = long double;

template<class T>
bool chmax(T &a, const T &b){
	if(a < b){ a = b; return true; }
	return false;
}

template<class T>
bool chmin(T &a, const T &b){
	if(a > b){ a = b; return true; }
	return false;
}

struct Block {
	int n, size, blocks;
	vector<int> A, P, belong, L, R, tag;
	
	inline Block() {}
	inline Block(const vector<int>& a): A(a) {
		n = a.size();
		size = (int)sqrt(n);
		blocks = (n + size - 1) / size;
		
		P.resize(n);
		belong.resize(n);
		L.resize(blocks);
		R.resize(blocks);
		tag.resize(blocks);
		
		for (int i = 0; i < blocks; i++) {
			L[i] = i * size;
			R[i] = min(L[i] + size - 1, n - 1);
			for (int j = L[i]; j <= R[i]; j++) belong[j] = i;
		}
		for (int i = 0; i < blocks; i++) build(i);
	}
	
	inline void build(int b) {
		for (int i = L[b]; i <= R[b]; i++) {
			A[i] += tag[b];
			P[i] = A[i];
		}
		sort(P.begin() + L[b], P.begin() + R[b] + 1);
		tag[b] = 0;
	}
	
	inline void add(int l, int r, int x) {
		const int bl = belong[l], br = belong[r];
		if (bl == br) {
			for (int i = l; i <= r; i++) A[i] += x;
			return build(bl);
		}
		for (int i = l; i <= R[bl]; i++) A[i] += x;
		for (int i = L[br]; i <= r; i++) A[i] += x;
		build(bl), build(br);
		for (int i = bl + 1; i < br; i++) tag[i] += x;
	}
	
	inline int query(int l, int r, int x) {
		const int bl = belong[l], br = belong[r];
		if (bl == br) {
			int ans = 0;
			for (int i = l; i <= r; i++) ans += (A[i] + tag[bl] >= x);
			return ans;
		}
		
		int ans = 0;
		for (int i = l; i <= R[bl]; i++) ans += (A[i] + tag[bl] >= x);
		for (int i = L[br]; i <= r; i++) ans += (A[i] + tag[br] >= x);
		for (int i = bl + 1; i < br; i++) {
			ans += R[i] + 1 - (lower_bound(P.begin() + L[i], P.begin() + R[i] + 1, 
			                               x - tag[i]) - P.begin());
		}
		return ans;
	}
};

signed main() {
	ios::sync_with_stdio(0);
	cin.tie(0), cout.tie(0);
	
	int n, m;
	cin >> n >> m;
	
	vector<int> a(n);
	for (int i = 0; i < n; i++) cin >> a[i];
	
	Block blk(a);
	for (int i = 0; i < m; i++) {
		char op; int l, r, x;
		cin >> op >> l >> r >> x;
		l--, r--;
		if (op == 'M') blk.add(l, r, x);
		else cout << blk.query(l, r, x) << endl;
	}
	
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值