排列组合 hdu5698 瞬间移动

本文介绍了一个经典的排列组合问题,即求从起点到终点的所有可能路径数量。通过将问题转化为求解特定排列组合的方式,利用数学方法高效求解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

传送门:点击打开链接

题意:只能往右下走,一次可以走很远。求从(1,1)走到(n,m)的步骤数

思路:枚举走的步数,假如为x

那么,对于行,我要从1通过x步走到n

对于列,我要从1通过x步走到m

这两个操作是独立的,所以可以乘起来

那么现在题目就变成了,求从1到n通过x步的方案数,其实就是把n-1个一样的小球放到x个不一样的箱子中,箱子不能留空的方案数,也就是一个经典的排列组合问题了

#include <map>
#include <set>
#include <cmath>
#include <ctime>
#include <stack>
#include <queue>
#include <cstdio>
#include <cctype>
#include <bitset>
#include <string>
#include <vector>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <functional>
#define fuck(x) cout<<"["<<x<<"]";
#define FIN freopen("input.txt","r",stdin);
#define FOUT freopen("output.txt","w+",stdout);
//#pragma comment(linker, "/STACK:102400000,102400000")
using namespace std;
typedef long long LL;
typedef pair<int, int> PII;

const int MX = 1e5 + 5;
const int mod = 1e9 + 7;

LL F[MX], invF[MX];
LL power(LL a, LL b) {
    LL ret = 1;
    while(b) {
        if(b & 1) ret = (ret * a) % mod;
        a = (a * a) % mod;
        b >>= 1;
    }
    return ret;
}
void init() {
    F[0] = 1;
    for(int i = 1; i < MX; i++) {
        F[i] = (F[i - 1] * i) % mod;
    }
    invF[MX - 1] = power(F[MX - 1], mod - 2);
    for(int i = MX - 2; i >= 0; i--) {
        invF[i] = invF[i + 1] * (i + 1) % mod;
    }
}
LL C(int n, int m) {
    if(n < 0 || m < 0 || m > n) return 0;
    if(m == 0 || m == n)    return 1;
    return F[n] * invF[n - m] % mod * invF[m] % mod;
}
LL f(int x, int y) {
    return C(y - 2, x - 1);
}
int main() {
    init();
    int n, m; //FIN;
    while(~scanf("%d%d", &n, &m)) {
        LL ans = 0;
        for(int l = 1; l <= min(n - 1, m - 1); l++) {
            ans += f(l, n) * f(l, m) % mod;
            ans %= mod;
        }
        printf("%I64d\n", ans);
    }
    return 0;
}


### HDU OJ 排列组合问题解法 排列组合问题是算法竞赛中的常见题型之一,涉及数学基础以及高效的实现技巧。以下是关于如何解决此类问题的一些通用方法和具体实例。 #### 数学基础知识 在处理排列组合问题时,需要熟悉以下几个基本概念: - **阶乘计算**:用于求解全排列的数量 $ n! = n \times (n-1) \times ... \times 1 $[^4]。 - **组合数公式**:$ C(n, k) = \frac{n!}{k!(n-k)!} $ 表示从 $ n $ 中选取 $ k $ 的方案数[^5]。 - **快速幂运算**:当涉及到模运算时,可以利用费马小定理优化逆元的计算[^6]。 #### 题目推荐与分析 以下是一些典型的 HDU OJ 上的排列组合题目及其可能的解法: ##### 1. 基础排列组合计数 - **HDU 2039 近似数** - 描述:给定两个整数 $ a $ 和 $ b $,统计区间内的近似数数量。 - 方法:通过枚举每一位上的可能性来构建合法数字并计数[^7]。 ```cpp #include <iostream> using namespace std; long long comb(int n, int r){ if(r > n || r < 0)return 0; long long res=1; for(int i=1;i<=r;i++)res=res*(n-i+1)/i; return res; } int main(){ int t,n,k; cin>>t; while(t--){ cin>>n>>k; cout<<comb(n+k-1,k)<<endl; // 组合数应用 } } ``` ##### 2. 动态规划的应用 - **HDU 1028 Ignatius and the Princess III** - 描述:给出正整数 $ m $ 和 $ n $,问有多少种方式把 $ m $ 分成最多 $ n $ 份。 - 方法:定义状态转移方程 $ dp[i][j]=dp[i-1][j]+dp[i][j-i] $ 来表示当前总和为 $ j $ 并分成至多 $ i $ 份的情况数目[^8]。 ```cpp #include<bits/stdc++.h> using namespace std; const int MAXN=1e3+5; long long c[MAXN][MAXN]; void init(){ memset(c,0,sizeof(c)); c[0][0]=1; for(int i=1;i<MAXN;i++){ c[i][0]=c[i][i]=1; for(int j=1;j<i;j++) c[i][j]=(c[i-1][j-1]+c[i-1][j])%(1e9+7); } } int main(){ init(); int T,m,n; scanf("%d",&T); while(T--){ scanf("%d%d",&m,&n); printf("%lld\n",c[m+n-1][min(m,n)]); } } ``` #### 总结 针对不同类型的排列组合问题,可以选择合适的工具和技术加以应对。无论是简单的直接计算还是复杂的动态规划模型,都需要扎实的基础知识作为支撑。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值