Race to 1 Again
Rimi learned a new thing about integers, which is - any positive integer greater than 1 can be divided by its divisors. So, he is now playing with this property. He selects a number N. And he calls this D.
In each turn he randomly chooses a divisor of D (1 to D). Then he divides D by the number to obtain new D. He repeats this procedure until D becomes 1. What is the expected number of moves required for N to become 1.
Input
Input starts with an integer T (≤ 10000), denoting the number of test cases.
Each case begins with an integer N (1 ≤ N ≤ 105).
Output
For each case of input you have to print the case number and the expected value. Errors less than 10-6 will be ignored.
Sample Input
3
1
2
50
Sample Output
Case 1: 0
Case 2: 2.00
Case 3: 3.0333333333
题意
对于一个数nnn,求把它变回1,所需要的除的次数的期望
题解
概率DP。
令dp[i]dp[i]dp[i]表示需要次数为iii的期望
状态转移方程:
dp[i]=∑d∣idp[d]num[i]+1dp[i]num[i]=∑d∣idp[d]+num[i]dp[i](num[i]−1)=∑d∣i,d≠idp[d]+num[i]dp[i]=∑d∣i,d≠idp[d]+num[i]num[i]−1
\begin{aligned}
dp[i]&=\cfrac{\sum_{d|i}{dp[d]}}{num[i]}+1\\
dp[i]num[i]&=\sum_{d|i}dp[d]+num[i]\\
dp[i](num[i]-1)&=\sum_{d|i,d=\not i}dp[d]+num[i]\\
dp[i]&=\cfrac{\sum_{d|i,d=\not i}dp[d]+num[i]}{num[i]-1}
\end{aligned}dp[i]dp[i]num[i]dp[i](num[i]−1)dp[i]=num[i]∑d∣idp[d]+1=d∣i∑dp[d]+num[i]=d∣i,d≠i∑dp[d]+num[i]=num[i]−1∑d∣i,d≠idp[d]+num[i]
其中d∣id|id∣i表示ddd是iii的因子,num[i]num[i]num[i]表示iii的因子个数
求解时,对每个i(i>1)i(i>1)i(i>1)都通过公式求出其dp[i]dp[i]dp[i],并对num[i]+1num[i]+1num[i]+1(iii本身也是因子),然后对iii的倍数jjj都进行dp[j]+=dp[i]dp[j]+=dp[i]dp[j]+=dp[i]并且num[j]+1num[j]+1num[j]+1,
代码
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <queue>
#include <cmath>
#include <string>
#include <cstring>
#include <map>
#include <set>
#include <cmath>
using namespace std;
#define me(x,y) memset(x,y,sizeof x)
#define MIN(x,y) x < y ? x : y
#define MAX(x,y) x > y ? x : y
typedef long long ll;
typedef unsigned long long ull;
const int maxn = 1e5;
const ll INF = 0x3f3f3f3f;
const int MOD = 998244353;
const double eps = 1e-06;
double dp[maxn+10];
int num[maxn+10];
void get_dp(){
me(dp,0);
me(num,0);
dp[1] = 0;
for(int i = 1; i <= maxn; ++i){
num[i]++;
if(i>1)dp[i] = (dp[i]+num[i])/(num[i]-1);
for(int j = i*2; j <= maxn; j += i){
dp[j] += dp[i];
num[j]++;
}
}
}
int main(){
int t;
get_dp();
cin>>t;
for(int ca = 1; ca <= t; ca++){
int n;
cin>>n;
printf("Case %d: %lf\n",ca,dp[n]);
}
return 0;
}
/*
*/