CF 1110E

本文深入探讨了差分构造算法的精妙之处,通过对比两个序列的差分,巧妙地解决了一类特定的算法问题。文章详细介绍了算法的实现过程,包括如何通过构造新的差分数组来简化比较流程,以及在特殊情况下对首项的处理,最后通过排序验证两序列的等价性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

差分题目。。。很神奇。。。

看了公式就会发现很简单,是个构造。。。

c i '  =  c i+1  + c i-1 - c i

= c i+1 - ci + c i-1

我们发现 出现了一个 ci+1  - ci, 那么我们很显然,可以尝试构造一个 新式子

di = ci+1 - ci

那么 di '  =  ci+1 - ci+1 + c i - c i-1  = d i-1

很显然,进行了一次交换,那么我们如此构造一个新数组,sort 一下判断数字个数是否一样就好了,

但是 因为 我们这么做的默认规则是 n >= 2 如果 第一项 不相等, 那么很显然, 第一项需要一步特判。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=1e5+5;
inline int read()
{
    register int s=0,w=1;register char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){s=s*10+ch-'0';ch=getchar();}
    return s*w;
}
int s[maxn],t[maxn];
int ds[maxn],dt[maxn];
int main()
{
    int n=read();
    for(int i=1;i<=n;i++)s[i]=read();
    for(int i=1;i<=n;i++)t[i]=read();
    if(s[1]!=t[1])
    {
        cout<<"No"<<endl;
        return 0;
    }
    int tot=0;
    for(int i=2;i<=n;i++)
        ds[++tot]=s[i]-s[i-1],
        dt[tot]=t[i]-t[i-1];
    sort(ds+1,ds+1+tot); sort(dt+1,dt+1+tot);
    bool fl = true;
    for(int i=1;i<=tot;i++)
    {
        if(ds[i] != dt[i])
        {
            fl = false;
            break;
        }
    }
    if(fl)
        cout<<"Yes"<<endl;
    else
        cout<<"No"<<endl;
    return 0;
}

 

<think>好的,用户现在在问Codeforces problem734E的解决方案或解释。我需要先回忆一下这道题的具体内容。题目编号734E对应的是Codeforces上的一个题目,通常这类题目会有具体的名称和问题描述。不过根据用户提供的引用内容,之前的引用似乎提到了其他问题,比如742B,涉及位运算和异或操作。但用户现在明确询问的是734E,所以需要转向这个题号的内容。首先,我需要确认734E的题目内容。Codeforces的题目734E的标题通常是“Antonand Tree”,这题涉及树的结构和图论中的连通性处理。题目大意是给定一棵树,每个节点有黑色或白色,每次操作可以翻转一个颜色相同的连通区域的颜色,问最少需要多少次操作让整棵树变成同一种颜色。 接下来,我需要分析这个问题。解决这类问题通常需要找到树中的最长路径,也就是直径。因为每次操作可以翻转整个同色连通区域,所以关键在于如何将相邻的相同颜色节点合并,形成更大的连通块。然后,将问题转化为处理合并后的树的直径,所需的最小操作次数通常是直径长度的一半,向上取整。用户可能需要具体的解决步骤,比如如何通过两次BFS或DFS找到树的直径,或者如何预处理颜色相同的连通块。此外,可能还需要解释为什么直径决定了最小操作次数,以及具体的实现方法,比如构建缩点后的树,然后计算其直径。在回答时,需要结构清晰,分步骤解释。可能还需要提供代码示例,比如用Python或C++实现的解法。同时,根据用户之前的引用,他们可能对位运算或其他算法感兴趣,但734E主要涉及树和图论,需要调整回答内容。 用户可能还会关心时间复杂度的分析,或者如何优化算法。例如,两次BFS的时间复杂度是线性的,适合处理大范围的树结构。此外,需要验证思路的正确性,确保每一步的逻辑正确,比如合并同色节点后的树结构是否确实将问题转化为求直径的问题。 最后,生成相关问题,比如如何找到树的直径,如何处理连通块,或者类似的问题推荐,帮助用户进一步巩固相关知识。</think>### Codeforces 734E Anton and Tree 问题解析 **题目概述** 给定一棵$n$个节点的树,每个节点为黑色或白色。每次操作可以选择一个颜色相同的连通区域,翻转其颜色(黑→白,白→黑)。求使整棵树变为单一颜色的最小操作次数[^4]。 --- ### 关键思路 1. **连通块合并** 将相邻同色节点视为一个超级节点(缩点),形成新的树结构。此时新树中相邻节点颜色必然不同。 **示例**:原树为`黑-黑-白-白-黑`,合并后变为`黑-白-黑`。 2. **树直径与操作次数** 新树的直径决定了最小操作次数。设直径为$d$,则答案为$\lfloor \frac{d+1}{2} \rfloor$。 **原理**:每次操作可消除直径端点的一层颜色差异,最终在$\lfloor d/2 \rfloor$步内完成[^1]。 --- ### 算法步骤 1. **构建缩点后的树** - 使用DFS/BFS遍历原树,合并同色连通块。 - 记录合并后的边(仅连接不同颜色块)。 2. **求树的直径** - **两次BFS法**: - 第一次BFS找到最远节点$u$ - 第二次BFS从$u$出发找到最远节点$v$,路径$u→v$即为直径。 --- ### 代码实现(Python) ```python import sys from collections import deque def main(): sys.setrecursionlimit(1 << 25) n = int(sys.stdin.readline()) color = list(map(int, sys.stdin.readline().split())) adj = [[] for _ in range(n)] for _ in range(n-1): u, v = map(int, sys.stdin.readline().split()) adj[u-1].append(v-1) adj[v-1].append(u-1) # 构建缩点后的边 new_edges = [[] for _ in range(n)] visited = [False] * n def dfs(u, parent): visited[u] = True for v in adj[u]: if v == parent: continue if color[u] == color[v]: dfs(v, u) else: new_edges[u].append(v) dfs(0, -1) # BFS找最远节点 def bfs(start): q = deque() dist = [-1] * n dist[start] = 0 q.append(start) max_dist = 0 far_node = start while q: u = q.popleft() for v in new_edges[u]: if dist[v] == -1: dist[v] = dist[u] + 1 if dist[v] > max_dist: max_dist = dist[v] far_node = v q.append(v) return far_node, max_dist u, _ = bfs(0) v, d = bfs(u) print((d + 1) // 2) if __name__ == "__main__": main() ``` --- ### 复杂度分析 - **时间**:$O(n)$,两次BFS和DFS均为线性时间。 - **空间**:$O(n)$,存储邻接表和距离数组。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值