##1.(适用于红外热成像相机、rgb相机、红外相机),只要能拍摄出多张棋盘格图像即可
##2. 代码输出的RMS(Root Mean Square)是一个统计学上的术语,表示均方根误差。在相机标定的上下文中,RMS误差是衡量标定质量的一个指标。它表示的是重投影误差的均方根值,即计算出的相机参数用于将三维世界坐标点投影到图像平面上时,这些投影点与实际检测到的图像点之间的误差的均方根值。具体来说,RMS值越小,表示相机标定的精度越高,计算出的相机参数越接近真实值。反之,如果RMS值较大,则可能意味着标定过程中存在较多的误差,可能是由于图像质量不佳、棋盘格角点检测不准确或其他原因造成的。
##3. 注意:pattern_size指定了棋盘格的角点尺寸;square_size指定了格子的实际尺寸,单位为厘米;当棋盘格更换时,就需要重新改动这些参数以符合当前标定的棋盘格参数。
##4. 操作步骤:用相机拍摄多张棋盘格图片后,新建文件夹data并将拍摄得到的棋盘格图像放入,以下代码运行可以遍历data中所有的棋盘格图像;之后,代码会综合所有棋盘格图像的处理结果,输出相机内参、RMS值、畸变参数与畸变校正前后的图像角点检测结果。!!!其余操作可查看代码中的注释已经很详细了。
##5. 对于相机内参、畸变参数的解释与原理可参考网站:https://blog.youkuaiyun.com/MobooV/article/details/128730417
# Python 2/3 compatibility
from __future__ import print_function
import numpy as np
import cv2 as cv
# local modules
def splitfn(fn):
path, fn = os.path.split(fn)
name, ext = os.path.splitext(fn)
return path, name, ext
# built-in modules
import os
def main():
import sys
import getopt
from glob import glob
args, img_mask = getopt.getopt(sys.argv[1:], '', ['debug=', 'square_size=', 'threads='])
args = dict(args)
args.setdefault('--debug', 'C:/Users/zhao/Desktop/realsense/test/output')##填入输入图像角点检测与畸变校正前后的图像输出路径
args.setdefault('--square_size', 2.5)##棋盘格单个格子的实际尺寸,单位为厘米
args.setdefault('--threads', 4)##cpu线程数设置,用于并行处理多个图像
if not img_mask:
img_mask = 'C:/Users/zhao/Desktop/realsense/test/data/??.jpg' # default ##填入输入图像的路径,采用??.jpg形式可以遍历并处理所有文件夹1中的所有图像,从而综合给出相机标定结果与相机畸变参数
else:
img_mask = img_mask[0]
img_names = glob(img_mask)
debug_dir = args.get('--debug')
if debug_dir and not os.path.isdir(debug_dir):
os.mkdir(debug_dir)
square_size = float(args.get('--square_size'))
pattern_size = (11, 8)##pattern_size 是一个元组,指定了棋盘格的尺寸,即棋盘格的角点数(宽度和高度)。这里棋盘格的尺寸被设置为 11x8,这意味着棋盘格有 11 个角点宽和 8 个角点高。
pattern_points = np.zeros((np.prod(pattern_size), 3), np.float32)
pattern_points[:, :2] = np.indices(pattern_size).T.reshape(-1, 2)
pattern_points *= square_size
obj_points = []
img_points = []
h, w = cv.imread(img_names[0], cv.IMREAD_GRAYSCALE).shape[:2] # TODO: use imquery call to retrieve results
def processImage(fn):
print('processing %s... ' % fn)
img = cv.imread(fn, 0)
if img is None:
print("Failed to load", fn)
return None
assert w == img.shape[1] and h == img.shape[0], ("size: %d x %d ... " % (img.shape[1], img.shape[0]))
found, corners = cv.findChessboardCorners(img, pattern_size)
if found:
term = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_COUNT, 30, 0.1)
cv.cornerSubPix(img, corners, (5, 5), (-1, -1), term)
if debug_dir:
vis = cv.cvtColor(img, cv.COLOR_GRAY2BGR)
cv.drawChessboardCorners(vis, pattern_size, corners, found)
_path, name, _ext = splitfn(fn)
outfile = os.path.join(debug_dir, name + '_chess.png')
cv.imwrite(outfile, vis)
if not found:
print('chessboard not found')
return None
print(' %s... OK' % fn)
return (corners.reshape(-1, 2), pattern_points)
threads_num = int(args.get('--threads'))
if threads_num <= 1:
chessboards = [processImage(fn) for fn in img_names]
else:
print("Run with %d threads..." % threads_num)
from multiprocessing.dummy import Pool as ThreadPool
pool = ThreadPool(threads_num)
chessboards = pool.map(processImage, img_names)
chessboards = [x for x in chessboards if x is not None]
for (corners, pattern_points) in chessboards:
img_points.append(corners)
obj_points.append(pattern_points)
# calculate camera distortion
rms, camera_matrix, dist_coefs, _rvecs, _tvecs = cv.calibrateCamera(obj_points, img_points, (w, h), None, None)
print("\nRMS:", rms)
print("camera matrix:\n", camera_matrix)
print("distortion coefficients: ", dist_coefs.ravel())
print(("rvecs:\n"), _rvecs) # 相机坐标系与标定板间的旋转向量 # 外参数
print(("tvecs:\n"), _tvecs) # 相机坐标系与标定板间的平移向量 # 外参数
# Save results to a text file
if debug_dir:
result_file = os.path.join(debug_dir, 'calibration_results.txt')
with open(result_file, 'w') as f:
f.write("RMS: {}\n".format(rms))
f.write("Camera Matrix:\n")
f.write(str(camera_matrix) + "\n")
f.write("Distortion Coefficients: {}\n".format(dist_coefs.ravel()))
# undistort the image with the calibration
print('')
for fn in img_names if debug_dir else []:
_path, name, _ext = splitfn(fn)
img_found = os.path.join(debug_dir, name + '_chess.png')##output文件夹中保存得到的_chess.png为畸变校正前的角点检测图像
outfile = os.path.join(debug_dir, name + '_undistorted.png')##output文件夹中保存得到的_undistorted.png为畸变校正后的角点检测图像
img = cv.imread(img_found)
if img is None:
continue
h, w = img.shape[:2]
newcameramtx, roi = cv.getOptimalNewCameraMatrix(camera_matrix, dist_coefs, (w, h), 1, (w, h))
dst = cv.undistort(img, camera_matrix, dist_coefs, None, newcameramtx)
# crop and save the image
x, y, w, h = roi
dst = dst[y:y+h, x:x+w]
print('Undistorted image written to: %s' % outfile)
cv.imwrite(outfile, dst)
print('Done')
if __name__ == '__main__':
print(__doc__)
main()
cv.destroyAllWindows()