原文地址:http://blog.youkuaiyun.com/qq_31759205/article/details/54730101
总算刷完kuangbin期望&概率专题了,下面总结一下心得和题解!
1.期望dp
期望dp通常逆推,即从结果推向初始状态,也可以用记忆化搜索进行dp;
E=Σp1*(E1+X1)+Σp2*(E+X2)
其中E为当前状态的期望,E1为下一个状态的期望,p1和X1分别为将当前状态转移到下一个状态的概率和花费,p2和X2分别为保持当前状态的概率和花费。
最后化简为E=(Σp1*(E1+X1)+Σp2*X2)/(1-Σp2)
2.概率dp
概率dp通常顺推,即从初始状态推向结果,E=Σp1*E1
其中E为当前状态的概率,E1为上一个状态的概率,p1是由上一个状态转移到当前状态的概率
3.高斯消元
当概率dp不能用递推式进行状态转移时,就需要用到高斯消元
如果有n个状态,则需要建立n*(n+1)行的矩阵,用A[i][j]表示
A[i][j]表示由状态i转移到状态j的概率,通常将最后一列设为0,再让A[i][i]+=-1
- const double eps = 1e-6;
- typedef vector<double> vec;
- typedef vector<vec> mat;
- vec gauss_jordan(const mat& A, const vec& b) {
- int n = A.size();
- mat B(n, vec(n + 1));
- for (int i = 0; i < n; i++)
- for (int j = 0; j < n; j++) B[i][j] = A[i][j];
- for (int i = 0; i < n; i++) B[i][n] = b[i];
- for (int i = 0; i < n; i++) {
- int pivot = i;
- for (int j = i; j < n; j++) {
- if (fabs(B[j][i]) > fabs(B[pivot][i])) pivot = j;
- }
- swap(B[i], B[pivot]);
- if (fabs(B[i][i]) < eps) return vec();
- for (int j = i + 1; j <= n; j++) B[i][j] /= B[i][i];
- for (int j = 0; j < n; j++) {
- if (i != j) {
- for (int k = i + 1; k <= n; k++) B[j][k] -= B[j][i] * B[i][k];
- }
- }
- }
- vec x(n);
- for (int i = 0; i < n; i++) x[i] = B[i][n];
- return x;
- }
const double eps = 1e-6;
typedef vector<double> vec;
typedef vector<vec> mat;
vec gauss_jordan(const mat& A, const vec& b) {
int n = A.size();
mat B(n, vec(n + 1));
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++) B[i][j] = A[i][j];
for (int i = 0; i < n; i++) B[i][n] = b[i];
for (int i = 0; i < n; i++) {
int pivot = i;
for (int j = i; j < n; j++) {
if (fabs(B[j][i]) > fabs(B[pivot][i])) pivot = j;
}
swap(B[i], B[pivot]);
if (fabs(B[i][i]) < eps) return vec();
for (int j = i + 1; j <= n; j++) B[i][j] /= B[i][i];
for (int j = 0; j < n; j++) {
if (i != j) {
for (int k = i + 1; k <= n; k++) B[j][k] -= B[j][i] * B[i][k];
}
}
}
vec x(n);
for (int i = 0; i < n; i++) x[i] = B[i][n];
return x;
}