【CSP-S2019】D2T1 Emiya 家今天的饭

本文详细解析了一道名为Emiya家今天的饭的算法题,涉及高中生日常烹饪场景,通过计算不同烹饪方法与食材组合的可能性,探讨了算法设计中的容斥原理和动态规划技巧,旨在解决符合特定条件的菜品搭配方案数量。

CSP-S2019 D2T1 Emiya 家今天的饭

题目

题目描述

Emiya 是个擅长做菜的高中生,他共掌握 nnn 种烹饪方法,且会使用 mmm 种主要食材做菜。为了方便叙述,我们对烹饪方法从 1∼n1 \sim n1n 编号,对主要食材从 1∼m1 \sim m1m 编号。

Emiya 做的每道菜都将使用恰好一种烹饪方法与恰好一种主要食材。更具体地,Emiya 会做 ai,ja_{i,j}ai,j​ 道不同的使用烹饪方法 iii 和主要食材 jjj 的菜(1≤i≤n,1≤j≤m1 \leq i \leq n, 1 \leq j \leq m1in,1jm),这也意味着 Emiya 总共会做 ∑i=1n∑j=1mai,j\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{m} a_{i,j}i=1nj=1mai,j​ 道不同的菜。

Emiya 今天要准备一桌饭招待 Yazid 和 Rin 这对好朋友,然而三个人对菜的搭配有不同的要求,更具体地,对于一种包含 kkk 道菜的搭配方案而言:

  • Emiya 不会让大家饿肚子,所以将做至少一道菜,即 k≥1k \geq 1k1
  • Rin 希望品尝不同烹饪方法做出的菜,因此她要求每道菜的烹饪方法互不相同
  • Yazid 不希望品尝太多同一食材做出的菜,因此他要求每种主要食材至多在一半的菜(即 ⌊k2⌋\lfloor \frac{k}{2} \rfloor2k 道菜)中被使用

这里的 ⌊x⌋\lfloor x \rfloorx 为下取整函数,表示不超过 xxx 的最大整数。

这些要求难不倒 Emiya,但他想知道共有多少种不同的符合要求的搭配方案。两种方案不同,当且仅当存在至少一道菜在一种方案中出现,而不在另一种方案中出现。

Emiya 找到了你,请你帮他计算,你只需要告诉他符合所有要求的搭配方案数对质数 998244353998244353998244353 取模的结果。

分析

考虑用容斥去掉这个 ⌊k2⌋\lfloor \frac{k}{2} \rfloor2k 限制,即用总方案数减掉不合法的方案数。

如果不考虑 ⌊k2⌋\lfloor \frac{k}{2} \rfloor2k 的限制的话,总方案数应该是:

∏i=1n(∑j=1mai,j+1)−1 \prod\limits_{i=1}^{n}\left ( \sum\limits_{j=1}^{m}a_{i,j}+1\right )-1 i=1n(j=1mai,j+1)1

我们减掉那个 111 是为了排除一道菜也不做的方案。

然后我们考虑用 DP 来计算不合法的方案数。我们先枚举哪个主要食材超过了限制。

si=∑j=1mai,js_i=\sum\limits_{j=1}^{m}a_{i,j}si=j=1mai,j ,记状态 f(i,j,k)f(i,j,k)f(i,j,k)为当前考虑到了第 iii 种的做菜方式,已经做了 jjj 道菜,其中 kkk 道菜用了我们枚举的主要食材。

转移显然,但这个做一次是 O(n3)O(n^3)O(n3) 的,再加上枚举的食材数量,总时间复杂度达到了 O(mn3)O(mn^3)O(mn3) 。显然超时。

考虑优化。我们开一开脑洞,不难发现只有 ⌊k2⌋≥j\lfloor \frac{k}{2} \rfloor \geq j2kj 的方案是不合法的,于是变一下这个不等式得到: 2j−k>02j - k > 02jk>0 ,于是我们可以令新的 j′=2j−kj' = 2j - kj=2jk,定义新的状态 f(i,j′)f(i, j')f(i,j) 为选了前 iii 种做法,其中 2j−k2j-k2jkj′j'j 的方案数。

记我们选择的主食为 ttt ,则有如下转移方式:

  • j′j'j 不为 −n-nn 时,f(i,j′)f(i,j')f(i,j)f(i+1,j′−1)f(i+1,j'-1)f(i+1,j1) 产生 f(i,j′)×(si−ai,t)f(i,j') \times (s_i - a_{i, t})f(i,j)×(siai,t) 的贡献;
  • 不选择第 iii 种做菜方式,则 f(i,j′)f(i, j')f(i,j)f(i+1,j′)f(i+1, j')f(i+1,j) 产生 f(i,j′)f(i, j')f(i,j) 的贡献;
  • 选择第 iii 种做菜方式,则 f(i,j′)f(i, j')f(i,j)f(i+1,j′+1)f(i+1, j'+1)f(i+1,j+1) 产生 f(i,j′)×ai,tf(i, j') \times a_{i, t}f(i,j)×ai,t 的贡献。

最后不合法的方案数就是 j′>0j' > 0j>0f(i,j′)f(i, j')f(i,j) 的总和。

注意 j′j'j 可能是个负数,我们必须将坐标平移 nnn 个单位。

本质上来说就是一个背包。

参考代码

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

typedef long long ll;
const int Maxn = 100;
const int Maxm = 2000;
const int Mod = 998244353;

int N, M;
int A[Maxn + 5][Maxm + 5];
int sum[Maxn + 5];

ll f[Maxn + 5][Maxn * 2 + 5];
ll Solve(int typ) {
	for(int i = 0; i <= N; i++)
		for(int j = 0; j <= N * 2; j++)
			f[i][j] = 0;
	f[0][N] = 1;
	for(register int i = 0; i < N; i++)
		for(register int j = 0; j <= N * 2; j++) {
			if(j) f[i + 1][j - 1] = (f[i + 1][j - 1] + f[i][j]
				* (sum[i + 1] - A[i + 1][typ]) % Mod) % Mod;
			f[i + 1][j] = (f[i + 1][j] + f[i][j]) % Mod;
			f[i + 1][j + 1] = (f[i + 1][j + 1] + f[i][j]
				* A[i + 1][typ] % Mod) % Mod;
		}
	ll ret = 0;
	for(int i = N + 1; i <= N * 2; i++)
		ret = (ret + f[N][i]) % Mod;
	return ret;
}

int main() {
#ifdef LOACL
	freopen("in.txt", "r", stdin);
	freopen("out.txt", "w", stdout);
#endif
	scanf("%d %d", &N, &M);
	for(int i = 1; i <= N; i++)
		for(int j = 1; j <= M; j++)
			scanf("%d", &A[i][j]);
	ll ans = 1;
	for(int i = 1; i <= N; i++) {
		for(int j = 1; j <= M; j++)
			sum[i] = (sum[i] + A[i][j]) % Mod;
		ans = ans * (sum[i] + 1) % Mod;
	}
	ans = (ans - 1 + Mod) % Mod;
	for(register int i = 1; i <= M; i++)
		ans = (ans - Solve(i) + Mod) % Mod;
	printf("%lld\n", ans);
	return 0;
}
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值