题意
给出N,统计满足下面条件的数对(a,b)的个数:
1.1<=a< b<=N
2.a+b整除a*b
n<=2^31-1
分析
代码
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long LL;
const int N=50005;
int top,prime[N],tot;
LL sta[N],mu[N],n,m;
bool not_prime[N];
void get_prime(int n)
{
mu[1]=1;
for (int i=2;i<=n;i++)
{
if (!not_prime[i]) prime[++tot]=i,mu[i]=-1;
for (int j=1;j<=tot&&i*prime[j]<=n;j++)
{
not_prime[i*prime[j]]=1;
if (i%prime[j]==0) break;
mu[i*prime[j]]=-mu[i];
}
}
}
void divi(LL n)
{
top=0;
LL i;
for (i=1;i*i<n;i++) if (n%i==0) sta[++top]=i,sta[++top]=n/i;
if (i*i==n) sta[++top]=i;
sort(sta+1,sta+top+1);
}
LL solve()
{
LL ans=0;
for (LL b=2;b*(b+1)<=n;b++)
{
divi(b);
for (LL a=1,last;a<b&&b*(a+b)<=n;a=last+1)
{
last=min(n/(n/b/(a+b))/b-b,b-1);LL cnt=0;
for (int i=1;sta[i]<=last;i++) cnt+=mu[sta[i]]*(last/sta[i]-(a-1)/sta[i]);
ans+=n/b/(a+b)*cnt;
}
}
return ans;
}
int main()
{
scanf("%lld",&n);m=sqrt(n);
get_prime(m+1);
printf("%lld",solve());
return 0;
}