Description
给出NNN,统计满足下面条件的数对(a,b)(a,b)(a,b)的个数:
1.1<=a<b<=N1.1<=a<b<=N1.1<=a<b<=N
2.a+b整除a∗b2.a+b整除a*b2.a+b整除a∗b
Sample Input
15
Sample Output
4
式子什么的先化一下:
设d=gcd(a,b)d=gcd(a,b)d=gcd(a,b),xd=a,yd=bxd=a,yd=bxd=a,yd=b,则
d(x+y)∣d2xyd(x+y)|d^2xyd(x+y)∣d2xy
(x+y)∣dxy(x+y)|dxy(x+y)∣dxy
又因为gcd(x+y,xy)=1gcd(x+y,xy)=1gcd(x+y,xy)=1,则
(x+y)∣d(x+y)|d(x+y)∣d
然后就是统计对于一个三元组(x,y,d)(x,y,d)(x,y,d)满足gcd(x,y)=1gcd(x,y)=1gcd(x,y)=1且xd<=n,yd<=nxd<=n,yd<=nxd<=n,yd<=n
设y>xy>xy>x,则可知对于一对二元组(x,y)(x,y)(x,y),贡献为⌊ny(x+y)⌋\lfloor \frac n{y(x+y)}\rfloor⌊y(x+y)n⌋。
式子就是:
ans=∑x=1n∑y=x+1n⌊ny(x+y)⌋[gcd(x,y)==1]ans=\sum_{x=1}^{\sqrt n}\sum_{y=x+1}^{\sqrt n}\lfloor \frac n{y(x+y)}\rfloor[gcd(x,y)==1]ans=x=1∑ny=x+1∑n⌊y(x+y)n⌋[gcd(x,y)==1]
莫反一下:
ans=∑x=1n∑y=x+1n⌊ny(x+y)⌋∑d∣x,d∣yμ(d)ans=\sum_{x=1}^{\sqrt n}\sum_{y=x+1}^{\sqrt n}\lfloor \frac n{y(x+y)}\rfloor\sum_{d|x,d|y}\mu(d)ans=x=1∑ny=x+1∑n⌊y(x+y)n⌋d∣x,d∣y∑μ(d)
=>=>=>
ans=∑d=1nμ(d)∑x=1nd∑y=x+1nd⌊ny(x+y)⌋ans=\sum_{d=1}^{\sqrt n}\mu(d)\sum_{x=1}^{\frac {\sqrt n}d}\sum_{y=x+1}^{\frac {\sqrt n}d}\lfloor \frac n{y(x+y)}\rfloorans=d=1∑nμ(d)x=1∑dny=x+1∑dn⌊y(x+y)n⌋
=>=>=>
ans=∑d=1nμ(d)∑y=1nd∑x=1y−1⌊ny(x+y)⌋ans=\sum_{d=1}^{\sqrt n}\mu(d)\sum_{y=1}^{\frac {\sqrt n}d}\sum_{x=1}^{y-1}\lfloor \frac n{y(x+y)}\rfloorans=d=1∑nμ(d)y=1∑dnx=1∑y−1⌊y(x+y)n⌋
然后你对前面这个ddd暴力枚举,后面的这个yyy也暴力枚举,然后后面这个xxx权值分块就好了。
时间复杂度好像是O(log(sqrtn)∗n34)O(log (sqrt n)*n^{\frac 34})O(log(sqrtn)∗n43)
#include <cmath>
#include <cstdio>
#include <cstring>
using namespace std;
typedef long long LL;
LL _min(LL x, LL y) {return x < y ? x : y;}
const int N = 50001;
int read() {
int s = 0, f = 1; char ch = getchar();
while(ch < '0' || ch > '9') {if(ch == '-') f = -1; ch = getchar();}
while(ch >= '0' && ch <= '9') s = s * 10 + ch - '0', ch = getchar();
return s * f;
}
void put(LL x) {
if(x >= 10) put(x / 10);
putchar(x % 10 + '0');
}
LL ans;
int n, plen, p[N], mu[N];
bool v[N];
void get_p() {
mu[1] = 1;
for(int i = 2; i < N; i++) {
if(!v[i]) p[++plen] = i, mu[i] = -1;
for(int j = 1; j <= plen && (LL)i * p[j] < N; j++) {
v[i * p[j]] = 1;
if(i % p[j] == 0) {mu[i * p[j]] = 0; break;}
else mu[i * p[j]] = -mu[i];
}
}
}
LL query(int x, int m) {
LL sum = 0;
LL cc = n / x / x;
for(int i = 1; i <= m / x; i++) {
LL g = cc / i;
for(int l = 1, r; l < i; l = r + 1) {
if(l + i > g) break;
r = _min(i - 1, g / (g / (l + i)) - i);
sum += (LL)g / (l + i) * (r - l + 1);
}
} return sum;
}
int main() {
n = read();
get_p(); int m = sqrt(n);
for(int i = 1; i <= m; i++) if(mu[i]){
ans += query(i, m) * mu[i];
} put(ans);
return 0;
}