DFT 矩阵 与steering vector的对应关系
steering vector:
- sinθ\sin \thetasinθ
a(θ)=[1,ej2πdsinθλ,⋯ ,ej2π(N−1)dsinθλ]Ta(\theta) = [1, e^{\frac{j2\pi d \sin \theta }{\lambda}},\cdots,e^{\frac{j2\pi(N-1)d \sin \theta }{\lambda}}]^Ta(θ)=[1,eλj2πdsinθ,⋯,eλj2π(N−1)dsinθ]T
–> d=λ/2d=\lambda/2d=λ/2—>e−j2π(i−1)N+j2kπ=ej2πdsinθλ=ejπsinθe^{-\frac{j2\pi (i-1)}{N}+j2k\pi} = e^{\frac{j2\pi d \sin \theta }{\lambda}}=e^{{j\pi \sin \theta }}e−Nj2π(i−1)+j2kπ=eλj2πdsinθ=ejπsinθ---->−2(i−1)N+2k=sinθ,i=1,2,...,N,k=0,±1,±2...,-\frac{2(i-1)}{N}+2k= \sin \theta,i = 1,2,...,N,k=0,\pm1,\pm2 ...,−N2(i−1)+2k=sinθ,i=1,2,...,N,k=0,±1,±2...,
当i=N/2+1i=N/2+1i=N/2+1时,sinθ=−1\sin \theta = -1sinθ=−1
所以iii从1到i=N/2+1i=N/2+1i=N/2+1时,角度变化从0到−π/2-\pi/2−π/2到000,
从i=N/2+2i=N/2+2i=N/2+2到N时,k=1k=1k=1,角度从−π/2-\pi/2−π/2 到 000, 所以中间有π\piπ的跳变
2. cosθ\cos \thetacosθ
a(θ)=[1,ej2πdcosθλ,⋯ ,ej2π(N−1)dcosθλ]Ta(\theta) = [1, e^{\frac{j2\pi d \cos \theta }{\lambda}},\cdots,e^{\frac{j2\pi(N-1)d \cos \theta }{\lambda}}]^Ta(θ)=[1,eλj2πdcosθ,⋯,eλj2π(N−1)dcosθ]T
–> d=λ/2d=\lambda/2d=λ/2—>e−j2π(i−1)N+j2kπ=ej2πdcosθλ=ejπcosθe^{-\frac{j2\pi (i-1)}{N}+j2k\pi} = e^{\frac{j2\pi d \cos \theta }{\lambda}}=e^{{j\pi \cos \theta }}e−Nj2π(i−1)+j2kπ=eλj2πdcosθ=ejπcosθ---->−2(i−1)N+2k=cosθ,i=1,2,...,N,k=0,±1,±2...,-\frac{2(i-1)}{N}+2k= \cos\theta,i = 1,2,...,N,k=0,\pm1,\pm2 ...,−N2(i−1)+2k=cosθ,i=1,2,...,N,k=0,±1,±2...,
当i=N/2+1i=N/2+1i=N/2+1时,cosθ=−1\cos \theta = -1cosθ=−1
所以iii从1到i=N/2+1i=N/2+1i=N/2+1时,角度变化从π\piπ到π/2\pi/2π/2
从i=N/2+2i=N/2+2i=N/2+2到N时,k=1k=1k=1,值从1到0,角度从000 到 π/2\pi/2π/2, 所以中间有π/2\pi/2π/2的跳变
Conclusion
DFT 矩阵每一列对应steering vector的某一方向,因此使用DFT矩阵来刻画mmwave信道角度域的稀疏性的时候,相当于给AoA和AoD域划分了格点,并且这个 划分的 AoA\AoD 按弧度(sinθ\sin \thetasinθ的θ\thetaθ并不是均匀的,是按值域均匀划分的。
~~(Note: 许多东西不要想当然,要自己去推,主要是要练手)