Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5
Sample Output
Case 1: 14 1 4 Case 2: 7 1 6 AC 代码: #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; const int MAXN = 1e5+10; int m[MAXN]; int t[MAXN]; int main() { int f, k = 1, low = 0, high = 0; scanf("%d", &f); while (f--) { memset(m, 0, sizeof(m)); memset(t, 0, sizeof(t)); int n; scanf("%d", &n); for (int i=0; i<n; i++) { scanf("%d", &m[i]); } int ans, ii = -1; for(int i=0; i<n; i++) { if (m[i] >= 0) { ans = m[i]; low = i; high = i; ii = i; break; } } if (-1 == ii) { ans = m[0]; low = 0; high = 0; for (int i=1; i<n; i++) { if (ans < m[i]) { ans = m[i]; low = i; high = i; } } } else { for (int i=ii; i<n; i++) { if (m[i] < 0) { continue; } t[i] = m[i]; if (ans < m[i]) { ans = m[i]; low = i; high = i; } for (int j=i+1; j<n; j++) { t[i] += m[j]; if (t[i] < 0) break; if (ans < t[i]) { ans = t[i]; low = i; high = j; } } } } printf("Case %d:\n", k++); printf("%d %d %d\n", ans, low+1, high+1); if (f) { printf("\n"); } } return 0; } 这道题刷了好几天终于过了,毕竟是在瓶颈期间,据说是lis题,我没联想到,我的代码应该是dp吧,哈哈哈。