hdu1024 scut训练1 dp

本文介绍了一个使用动态规划解决的问题,并通过实例代码展示了如何利用mmax数组优化算法,避免使用两个一维数组进行维护,从而提高效率。
看题解,抄代码。。
这个地方和之前的还是有共同之处,就是都选定第j个,  然后用东西维护。。 这里是用  mmax来维护,而不是用dp的两个一维数组维护,因为怕会混
#include<stdio.h>
#include<algorithm>
#include<iostream>
using namespace std;
#define MAXN 1000000
#define INF 0x7fffffff
int dp[MAXN+10];
int mmax[MAXN+10];
int a[MAXN+10];
int main()
{
    int n,m;
    int i,j,mmmax;
    while(scanf("%d%d",&m,&n)!=EOF)
    {
        for(i=1;i<=n;i++)
        {
            scanf("%d",&a[i]);
            mmax[i]=0;
            dp[i]=0;
        }
        dp[0]=0;
        mmax[0]=0;    
        for(i=1;i<=m;i++)
        {//Status[i][j]表示前i个数在选取第i个数的前提下分成j段的最大值,
                mmmax=-INF;
                for(j=i;j<=n;j++)
                {//dp[j]表示包含了第j个
                    dp[j]=max(dp[j-1]+a[j],mmax[j-1]+a[j]);//first:没有分组,且是一定选了第j-1个,second:分了组,一定没有选第j-1个
                    mmax[j-1]=mmmax;
                    mmmax=max(mmmax,dp[j]);//mmax用于维护前j-1个的最大值,因此mmmax可以是不含第j个的
                }    
        }  
        printf("%d\n",mmmax);  
          
    } 
    return 0;   
}    





2017年5月4日14:43:06:

又忘了为什么会这样。。

再看的时候

没有用动态转移方程:dp[i][j]=max(dp[i][j-1]+a[j],max(dp[i-1][k])+a[j]) (0<k<j)


自己敲了几下别的转移方程,,都错了。。

跟着敲的代码也是错的。。


其实这个地方滚动数组和用    mmax来维护是很经典的。。



int main(){
    while(~sf("%d%d",&m,&n)){
        for(int i=1;i<=n;++i)sf("%d",&a[i]);
        for(int i=1;i<=m;++i){
            int tmp=-INF;
            for(int j=i;j<=n;++j){
                dp[j]=max(dp[j-1]+a[j],mmax[j-1]+a[j]);
                mmax[j-1]=max(tmp,mmax[j-1]);
                tmp=max(dp[j-1],tmp);
            }
        }
        cout<<dp[n]<<endl;
    }
}







评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值