【BZOJ1415】】聪聪和可可 记忆化搜索的概率dp

本文介绍了一种使用记忆化搜索算法解决图中两点间路径概率问题的方法。通过记录已计算过的路径概率避免重复计算,提高效率。该算法首先进行广度优先搜索(BFS)预处理所有节点间的最短距离,然后利用递归方式计算从起点到终点经过特定节点的概率。
别的代码我是看不懂了,,渣渣只能看得只能看得懂这份用记忆化搜索的代码,,
感觉真的挺好看懂的。 但是想就有点难想了,但是应该比那种单纯的方程好记些,             但是毕竟我以后还是很难想到啊。。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<vector>
#include<set>
#include<map>
#include<algorithm>
using namespace std;
const int maxn = 1e3 + 5, oo = 0x3f3f3f3f;
struct Edge{
    int to, next;
}edge[maxn << 1];
int head[maxn];
int dist[maxn][maxn];
int n, e, s, t;
double dp[maxn][maxn];
bool vis[maxn][maxn];
int tot = 0;
void addedge(int u, int v)
{
    edge[tot].to = v;
    edge[tot].next = head[u];
    head[u] = tot++;
}
void bfs(int s)
{
    queue<int>q;q.push(s);
    dist[s][s] = 0;
    while(!q.empty()){
        int t = q.front();q.pop();
        for(int i = head[t]; i != -1; i = edge[i].next){
            int v = edge[i].to;
            if(dist[v][s] > dist[t][s] + 1){
                dist[v][s] = dist[t][s] + 1;
                q.push(v);
            }
        }
    }
}
double dfs(int a, int b)
{
    if(a == b) return dp[a][b] = 0;
    if(vis[a][b]) return dp[a][b];
    vis[a][b] = true;
    int mins = oo;
    int nxt = b;
    for(int i = head[b]; i != -1; i = edge[i].next){
        int v = edge[i].to;
        if(dist[v][a] == mins && v < nxt) nxt = v; 
        else if(dist[v][a] < mins){
            mins = dist[v][a];
            nxt = v;
        }
    }
    int nxtt = nxt;
    if(nxt == a) return dp[a][b] = 1.0; 
    for(int i = head[nxt]; i != -1; i = edge[i].next){
        int v = edge[i].to;
        if(dist[v][a] == mins && v < nxtt) nxtt = v; 
        else if(dist[v][a] < mins){
            mins = dist[v][a];
            nxtt = v;
        }
    }
    if(nxtt == a) return dp[a][b] = 1.0;
    dp[a][b] = dfs(a, nxtt);
    int cnt = 1;
    for(int i = head[a]; i != -1; i = edge[i].next){
        int v = edge[i].to;
        cnt++;
        dp[a][b] +=  dfs(v, nxtt);
    }
    dp[a][b] /= cnt * 1.0;
    dp[a][b]++;
    return dp[a][b];
}
int main (void)
{
    scanf("%d%d", &n, &e);
    scanf("%d%d", &s, &t);
    memset(dist, 0x3f, sizeof(dist));
    memset(head, -1, sizeof(head));
    int x, y;
    for(int i = 0; i < e; i++){
        scanf("%d%d", &x, &y);
        addedge(x, y);
        addedge(y, x);
    }
    for(int i = 1; i <= n; i++) bfs(i);//这个地方用  了n次bfs来求任意两点之间的最短路
    printf("%.3f\n", dfs(t, s));
    return 0;
}

题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值