智算菩萨
大家好,我是智算菩萨,一名热衷于探索计算机程序奥秘的爱好者。在代码的海洋里,我如同一位航行者,不断追寻着技术的灯塔,致力于将复杂的问题抽丝剥茧,用算法的智慧点亮创新的火花。
我对编程语言有着浓厚的兴趣,从Python的简洁到C++的力量,从JavaScript的灵动到Java的稳重,每一种语言都像是打开新世界大门的钥匙,让我沉浸其中,乐此不疲。
在算法与数据结构的森林里,我享受解谜的乐趣,无论是深度优先搜索的深度探索,还是动态规划的优雅求解,都让我感受到计算机科学的魅力所在。
作者QQ1248693038,粉丝群1009840934,欢迎交流学习分享!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【神经网络框架】非局部神经网络
非局部操作(Non-local Operation)是该研究的核心创新点,其数学定义源自经典计算机视觉中的非局部均值算法(Non-local Means)。原创 2025-02-09 21:05:45 · 486 阅读 · 0 评论 -
【文献讲解】《Non-local Neural Networks》
非局部神经网络通过非局部操作有效捕捉长距离依赖关系,为深度学习模型提供了一种新的构建模块。文献强调,非局部操作的通用性使其适用于多种计算机视觉任务,并呼吁未来的网络架构广泛采用这种非局部层,以进一步提升性能。原创 2025-02-09 20:43:00 · 100 阅读 · 0 评论 -
【论文精读】《Towards Deep Learning Models Resistant to Adversarial Attacks》
本文探讨了深度学习模型在面对对抗性攻击时的脆弱性,并提出了一种基于鲁棒优化的方法来增强神经网络的对抗鲁棒性。通过鞍点优化框架,作者提供了对抗攻击和防御机制的统一视角,并在MNIST和CIFAR-10数据集上验证了其方法的有效性。对抗训练的核心思想是将对抗样本引入训练过程,使模型能够学习到对抗样本的特征,从而提升其鲁棒性。本文通过鞍点优化框架提出了一种基于鲁棒优化的对抗训练方法,显著提升了深度学习模型的对抗鲁棒性。本文为深度学习模型的对抗鲁棒性研究提供了新的理论和实证支持,同时为未来研究指明了方向。原创 2025-02-07 11:15:32 · 263 阅读 · 0 评论 -
【论文精读】Virtual Adversarial Training——一种用于监督学习和半监督学习的正则化方法
本文提出了一种新的正则化方法——虚拟对抗训练(Virtual Adversarial Training, VAT),旨在通过引入虚拟对抗损失来增强模型的泛化能力。虚拟对抗损失衡量了给定输入条件下条件标签分布的局部平滑性,定义为模型对输入数据点周围局部扰动的鲁棒性。与传统对抗训练不同,VAT不需要标签信息来定义对抗方向,因此适用于半监督学习。本文详细阐述了VAT的核心方法,并通过实验验证了其在多个基准数据集上的有效性。:虚拟对抗训练;正则化方法;监督学习;半监督学习;对抗方向。原创 2025-02-06 11:23:33 · 88 阅读 · 0 评论 -
【论文精读】Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset
为此,本文提出了一个大规模数据集——Kinetics,以及一种新型的双流膨胀3D卷积网络(I3D),以更好地捕捉视频的时空特征。本文提出的I3D模型通过膨胀操作将2D卷积网络扩展为3D卷积网络,结合双流架构和大规模预训练,显著提升了视频动作识别的性能。I3D(Inflated 3D ConvNet)是本文提出的核心模型,通过将传统的2D卷积网络扩展为3D卷积网络,能够同时捕捉视频的空间和时间特征。膨胀操作的核心是将2D卷积核扩展为3D卷积核,同时初始化3D卷积核的权重为2D卷积核的权重。原创 2025-02-06 10:31:47 · 255 阅读 · 0 评论 -
【理论知识】 2D 卷积、3D 卷积与 3D 池化
卷积神经网络(Convolutional Neural Networks, CNNs)在计算机视觉、视频处理和医学影像分析等领域取得了显著的成功。卷积操作作为CNN的核心,主要包括二维卷积(2D Convolution)、三维卷积(3D Convolution)和三维池化(3D Pooling)。本文将系统地介绍2D卷积、3D卷积及3D池化的基本原理、数学公式、应用场景,并通过表格和示例详细比较这些操作的差异与优势,以帮助读者深入理解这些关键技术。原创 2025-02-06 10:11:38 · 1300 阅读 · 0 评论