控制系统的数学模型
基本概念
-
数学模型: 描述系统输入、输出变量以及内部各变量之间关系的数学表达式
-
建模方法:
-
解析法(机理分析法)
根据系统工作所依据的物理定律列写运动方程
-
实验法(系统辨识法)
给系统施加某种测试信号, 记录输出响应, 并用适当的数学模型去逼近系统的输入输出特性
-
-
线性定常系统微分方程的一般形式
-
非线性定常系统
d 2 c ( t ) d t 2 + 2 d c ( t ) d t c ( t ) + 5 = 2 d c ( t ) d t r ( t ) \frac{d^2c(t)}{dt^2}+2\frac{dc(t)}{dt}c(t)+5=2\frac{dc(t)}{dt}r(t) dt2d2c(t)+2dtdc(t)c(t)+5=2dtdc(t)r(t) -
线性时变系统
d c ( t ) d t + cos ( t ) c ( t ) = 2 r ( t ) \frac{dc(t)}{dt}+\cos(t)c(t)=2r(t) dtdc(t)+cos(t)c(t)=2r(t)
- 非线性时变系统
d 3 c ( t ) d t 3 − e − t d c ( t ) d t + 6 c ( t ) = t r ( t ) \frac{d^3c(t)}{dt^3}-e^{-t}\frac{dc(t)}{dt}+6c(t)=tr(t) dt3d3c(t)−e−tdtdc(t)+6c(t)=tr(t)
- 非线性系统微分方程的线性化: 利用泰勒公式展开取近似
拉普拉斯变换内容复习
线性定常微分方程求解
复数相关概念
- 复数:
S = σ + j ω S = \sigma+j\omega S=σ+jω
- 复函数:
F ( s ) = F x ( S ) + j F y ( s ) F(s) = F_x(S) + jF_y(s) F(s)=Fx(S)+jFy(s)
- 模
∣ F ( S ) ∣ = F x 2 + F y 2 |F(S)| = \sqrt{{F_x}^2+{F_y}^2} ∣F(S)∣=Fx2+Fy2
- 相角
∠ F ( S ) = arctan F y F x \angle F(S) = \arctan{\frac{F_y}{F_x}} ∠F(S)=arctanFxFy
- 复数的共轭
F ( S ) ‾ = F x − j F y \overline {F(S)} = F_x-jF_y F(S)=Fx−jFy
-
解析
若F(S)在s点的各阶导数都存在, 则F(s)在s点解析
拉氏变换的定义
L [ f ( t ) ] = F ( S ) = ∫ 0 ∞ f ( t ) ⋅ e − s t d t = { F ( s ) 像 f ( t ) 原像 L[f(t)]=F(S)=\int_0^{\infty}f(t)·e^{-st}dt \ = \ \ \ \begin{cases} F(s)\ \ \ \ \ \ 像\\f(t)\ \ \ \ 原像\\ \end{cases} L[f(t)]=F(S)=∫0∞f(t)⋅e−stdt = {F(s) 像f(t) 原像
常见函数的拉氏变换
-
阶跃函数 f ( t ) = { 1 t ≥ 0 0 t < 0 f(t)=\begin{cases} 1\ \ \ \ \ \ t\geq0\\0\ \ \ \ \ \ t<0\end{cases} f(t)={1 t≥00 t<0
L [ 1 ( t ) ] = ∫ 0 ∞ 1 ⋅ e − s t d t = − 1 s [ e − s t ] 0 ∞ = − 1 s ( 0 − 1 ) = 1 s L[1(t)] = \int_0^\infty1·e^{-st}dt = \frac{-1}{s}[e^{-st}]_0^{\infty} = \frac{-1}{s}(0-1)=\frac{1}{s} L[1(t)]=∫0∞1⋅e−stdt=s−1[e−st]0∞=s−1(0−1)=s1 -
指数函数 f ( t ) = e − α t f(t)=e^{-\alpha t} f(t)=e−αt
L [ f ( t ) ] = ∫ 0 ∞ e − α t ⋅ e − s t d t = ∫ 0 ∞ e − ( α + s ) t d t = − 1 s + α [ e − ( s + α ) t ] 0 ∞ = − 1 s + α ( 0 − 1 ) = 1 s + α \begin{aligned}L[f(t)] &= \int_0^\infty e^{-\alpha t}·e^{-st}dt = \int_0^\infty e^{-(\alpha+s)t}dt\\ &=\frac{-1}{s+\alpha}[e^{-(s+\alpha)t}]_0^\infty=\frac{-1}{s+\alpha}(0-1)=\frac{1}{s+\alpha} \end{aligned} L[f(t)]=∫0∞e−αt⋅e−stdt=∫0∞e−(α+s)tdt=s+α−1[e−(s+α)t]0∞=s+α−1(0−1)=s+α1 -
正弦函数 f ( t ) = { 0 t < 0 sin ω t t ≥ 0 f(t)=\begin{cases}0\quad t<0\\\sin{\omega t}\quad t\geq0\end{cases} f(t)={0t<0sinωtt≥0
L [ f ( t ) ] = ∫ 0 ∞ sin ω t ⋅ e − s t d t = 1 2 j [ e j w t − e − j w t ] ⋅ e − s t d t = ∫ 0 ∞ 1 2 j [ e − ( s − j w ) t − e − ( s + j w ) t ] d t = 1 2 j [ − 1 s − j w e − ( s − j w ) ∣ 0 ∞ − − 1 s + j w e − ( s + j w ) ∣ 0 ∞ ] = 1 2 j [ 1 s − j w − 1 s + j w ] = 1 2 j ⋅ 2 j w s 2 + w 2 = w s 2 + w 2 \begin{aligned}L[f(t)] &= \int_0^\infty \sin{\omega t}·e^{-st}dt=\frac{1}{2j}[e^{jwt}-e^{-jwt}]·e^{-st}dt\\ &=\int_0^\infty \frac{1}{2j}[e^{-(s-jw)t}-e^{-(s+jw)t}]dt\\&=\frac{1}{2j}[\frac{-1}{s-jw}e^{-(s-jw)}|_0^\infty -\frac{-1}{s+jw}e^{-(s+jw)}|_0^\infty]\\&=\frac{1}{2j}[\frac{1}{s-jw}-\frac{1}{s+jw}]=\frac{1}{2j}·\frac{2jw}{s^2+w^2}=\frac{w}{s^2+w^2} \end{aligned} L[f(t)]=∫0∞sinωt⋅e−stdt=2j1[ejwt−e−jwt]⋅e−stdt=∫0∞2j1[e−(s−jw)t−e−(s+jw)t]dt=2j1[s−jw−1e−(s−jw)∣0∞−s+jw−1e−(s+jw)∣0∞]=2j1[s−jw1−s+jw1]=2j1⋅s2+w22jw=s2+w2w
拉氏变换的几个重要定理
-
线性性质: L [ α f 1 ( t ) ± b f 2 ( t ) ] = α F 1 ( s ) ± b F 2 ( s ) L[\alpha f_1(t)\pm bf_2(t)]=\alpha F_1(s)\pm bF_2(s) L[αf1(t)±bf2(t)]=αF1(s)±bF2(s)
-
微分定理: L [ f ′ ( t ) ] = s ⋅ F ( s ) − f ( 0 ) L[f'(t)] = s·F(s)-f(0) L[f′(t)]=s⋅F(s)−f(0) s在时域中相当于求导
证明:
左 = ∫ 0 ∞ f ′ ( t ) e − s t d t = ∫ 0 ∞ e − s d f ( t ) = [ e − s t f ( t ) ] 0 ∞ − ∫ 0 ∞ f ( t ) d e − s t = [ 0 − f ( 0 ) ] + s ∫ f ( t ) e − s t d t = s F ( s ) − f ( 0 ) = 右 L [ f ( n ) ( t ) ] = s n F ( s ) − s n − 1 f ( 0 ) − s n − 2 f ′ ( 0 ) − ⋅ ⋅ ⋅ s f ( n − 2 ) ( 0 ) − f ( n − 1 ) ( 0 ) 0 初条件下有 : L [ f ( n ) ( t ) ] = s n F ( s ) \begin{aligned}左&=\int_0^\infty f'(t)e^{-st}dt = \int_0^\infty e^{-s}df(t)=[e^{-st}f(t)]_0^\infty-\int_0^\infty f(t)de^{-st}\\ &=[0-f(0)]+s\int f(t)e^{-st}dt=sF(s)-f(0)=右 \end{aligned}\\ L[f^{(n)}(t)] = s^nF(s)-s^{n-1}f(0)-s^{n-2}f'(0)-···sf^{(n-2)}(0)-f^{(n-1)}(0)\\ 0初条件下有: L[f^{(n)}(t)]=s^nF(s) 左=∫0∞f′(t)e−stdt=∫0∞e−sdf(t)=[e−stf(t)]0∞−∫0∞f(t)de−st=[0−f(0)]+s∫f(t)e−stdt=sF(s)−f(0)=右L[f(n)(t)]=snF(s)−sn−1f(0)−sn−2f′(0)−⋅⋅⋅sf(n−2)(0)−f(n−1)(0)0初条件下有:L[f(n)(t)]=snF(s) -
积分定理: L [ ∫ f ( t ) d t ] = 1 s ⋅ F ( s ) + 1 s f − 1 ( 0 ) L[\int f(t)dt]=\frac{1}{s}·F(s)+\frac{1}{s}f^{-1}(0) L[∫f(t)dt]=s1⋅F(s)+s1f−1(0)
零初始条件下有 : L [ ∫ f ( t ) d t ] = 1 s F ( s ) 进一步有 : L [ ∫ ∫ ∫ . . . ∫ f ( t ) d t n ] = 1 s n F ( s ) + 1 s n f − 1 ( 0 ) + 1 s n − 1 f − 2 ( 0 ) + . . . + 1 s f − n ( 0 ) 零初始条件下有: L[\int f(t)dt] = \frac{1}{s}F(s)\\ 进一步有: L[\int\int\int...\int f(t)dt^n] = \frac{1}{s^n}F(s)+\frac{1}{s^n}f^{-1}(0)+\frac{1}{s^{n-1}}f^{-2}(0)+...+ \frac{1}{s}f^{-n}(0) 零初始条件下有:L[∫f(t)dt]=s1F(s)进一步有:L[∫∫∫...∫f(t)dtn]=sn1F(s)+sn1f−1(0)+sn−11f−2(0)+...+s1f−n(0)
- 实位移定理: L [ f ( t − τ 0 ) ] = e − τ 0 s ⋅ F ( s ) L[f(t-\tau_0)]=e^{-\tau_0 s}·F(s) L[f(t−τ0)]=e−τ0s⋅F(s)
证明:
左
=
∫
0
∞
f
(
t
−
τ
0
)
⋅
e
−
s
t
d
t
令
t
−
τ
0
=
τ
=
∫
τ
0
∞
f
(
τ
)
⋅
e
−
s
(
τ
+
τ
0
)
d
τ
=
e
−
s
τ
0
∫
τ
0
∞
f
(
τ
)
e
−
s
τ
d
τ
=
右
\begin{aligned} 左&=\int_0^\infty f(t-\tau_0)·e^{-st}dt\quad令t-\tau_0=\tau\\&=\int_{\tau_0}^\infty f(\tau)·e^{-s(\tau + \tau_0)}d\tau=e^{-s\tau_0}\int_{\tau_0}^\infty f(\tau) e^{-s\tau}d\tau=右 \end{aligned}
左=∫0∞f(t−τ0)⋅e−stdt令t−τ0=τ=∫τ0∞f(τ)⋅e−s(τ+τ0)dτ=e−sτ0∫τ0∞f(τ)e−sτdτ=右
- 复位移定理: L [ e A ⋅ t f ( t ) ] = F ( s − A ) L[e^{A·t}f(t)]=F(s-A) L[eA⋅tf(t)]=F(s−A)
证明:
左
=
∫
0
∞
e
A
⋅
t
f
(
t
)
⋅
e
−
s
t
d
t
=
∫
0
∞
f
(
t
)
e
−
(
s
−
A
)
t
d
t
令
s
−
A
=
s
^
=
∫
0
∞
f
(
t
)
−
s
^
t
d
t
=
F
(
s
^
)
=
F
(
s
−
A
)
=
右
\begin{aligned} 左&=\int_0^\infty e^{A·t}f(t)·e^{-st}dt=\int_0^\infty f(t)e^{-(s-A)t}dt \quad 令s-A=\widehat{s}\\&=\int_0^\infty f(t)^{-\widehat{s}t}dt=F(\widehat{s})=F(s-A)=右 \end{aligned}
左=∫0∞eA⋅tf(t)⋅e−stdt=∫0∞f(t)e−(s−A)tdt令s−A=s
=∫0∞f(t)−s
tdt=F(s
)=F(s−A)=右
- 初值定理: lim t → 0 f ( t ) = lim s → ∞ s ⋅ F ( s ) \lim_{t\rightarrow0}f(t)=\lim_{s\rightarrow \infty }s·F(s) limt→0f(t)=lims→∞s⋅F(s)
证明:
由微分定理
∫
0
∞
d
f
(
t
)
d
t
⋅
e
−
s
t
d
t
=
s
⋅
F
(
s
)
−
f
(
0
)
lim
s
→
∞
∫
0
∞
d
f
(
t
)
d
t
⋅
e
−
s
t
d
t
=
lim
s
→
∞
[
s
⋅
F
(
s
)
−
f
(
0
)
]
又
lim
s
→
∞
∫
0
∞
d
f
(
t
)
d
t
⋅
e
−
s
t
=
∫
0
+
∞
d
f
(
t
)
d
t
⋅
lim
s
→
∞
e
−
s
t
d
t
=
0
(
分部积分
)
∴
lim
s
→
∞
[
s
⋅
F
(
s
)
−
f
(
0
+
)
]
=
0
即
f
(
0
+
)
=
lim
t
→
0
f
(
t
)
=
s
⋅
F
(
s
)
\begin{aligned} 由微分定理 \quad \int_0^\infty \frac{df(t)}{dt}·e^{-st}dt&=s·F(s)-f(0)\\ \lim_{s\rightarrow \infty}\int_0^\infty \frac{df(t)}{dt}·e^{-st}dt &=\lim_{s\rightarrow \infty}[s·F(s)-f(0)]\\ 又\lim_{s\rightarrow \infty}\int_0^\infty \frac{df(t)}{dt}·e^{-st}&=\int_{0_+}^\infty \frac{df(t)}{dt}·\lim_{s\rightarrow \infty}e^{-st}dt=0(分部积分)\\ \therefore\lim_{s\rightarrow \infty}[s·F(s)-f(0_+)] &= 0\\ 即\quad f(0_+)=\lim_{t\rightarrow0}f(t) &= s·F(s)\end{aligned}
由微分定理∫0∞dtdf(t)⋅e−stdts→∞lim∫0∞dtdf(t)⋅e−stdt又s→∞lim∫0∞dtdf(t)⋅e−st∴s→∞lim[s⋅F(s)−f(0+)]即f(0+)=t→0limf(t)=s⋅F(s)−f(0)=s→∞lim[s⋅F(s)−f(0)]=∫0+∞dtdf(t)⋅s→∞lime−stdt=0(分部积分)=0=s⋅F(s)
- 终值定理: lim t → ∞ f ( t ) = lim s → 0 s ⋅ F ( s ) \lim_{t\rightarrow \infty}f(t)=\lim_{s\rightarrow0}s·F(s) limt→∞f(t)=lims→0s⋅F(s) (终值确实存在时)
证明:
由微分定理
∫
0
∞
d
f
(
t
)
d
t
e
−
s
t
d
t
=
s
⋅
F
(
s
)
−
f
(
0
)
lim
s
→
0
∫
0
∞
d
f
(
t
)
d
t
⋅
e
−
s
t
d
t
=
lim
s
→
0
[
s
⋅
F
(
s
)
−
f
(
0
)
]
又
lim
s
→
0
∫
0
∞
d
f
(
t
)
d
t
⋅
e
−
s
t
d
t
=
∫
0
∞
d
f
(
t
)
d
t
lim
s
→
0
e
−
s
t
d
t
=
∫
0
∞
d
f
(
t
)
=
lim
t
→
∞
∫
0
t
d
f
(
t
)
=
lim
t
→
∞
[
f
(
t
)
−
f
(
0
)
]
∴
lim
t
→
∞
[
f
(
t
)
−
f
(
0
)
]
=
lim
s
→
0
[
s
⋅
F
(
s
)
−
f
(
0
)
]
即
lim
t
→
∞
f
(
t
)
=
lim
s
→
0
s
⋅
F
(
s
)
\begin{aligned} 由微分定理\quad \int_0^\infty \frac{df(t)}{dt}e^{-st}dt &= s·F(s)-f(0)\\ \lim_{s\rightarrow0}\int_0^\infty \frac{df(t)}{dt}·e^{-st}dt&=\lim_{s\rightarrow0}[s·F(s)-f(0)]\\ 又\lim_{s\rightarrow0}\int_0^\infty \frac{df(t)}{dt}·e^{-st}dt&=\int_0^\infty \frac{df(t)}{dt}\lim_{s\rightarrow0}e^{-st}dt=\int_0^\infty df(t)=\lim_{t\rightarrow \infty}\int_0^tdf(t)\\ &=\lim_{t\rightarrow \infty}[f(t)-f(0)]\\ \therefore \lim_{t\rightarrow \infty}[f(t)-f(0)] &=\lim_{s\rightarrow0}[s·F(s)-f(0)]\\ 即\lim_{t\rightarrow \infty}f(t)&=\lim_{s\rightarrow0}s·F(s) \end{aligned}
由微分定理∫0∞dtdf(t)e−stdts→0lim∫0∞dtdf(t)⋅e−stdt又s→0lim∫0∞dtdf(t)⋅e−stdt∴t→∞lim[f(t)−f(0)]即t→∞limf(t)=s⋅F(s)−f(0)=s→0lim[s⋅F(s)−f(0)]=∫0∞dtdf(t)s→0lime−stdt=∫0∞df(t)=t→∞lim∫0tdf(t)=t→∞lim[f(t)−f(0)]=s→0lim[s⋅F(s)−f(0)]=s→0lims⋅F(s)
重要定理例题:
求 L [ δ ( t ) ] L[\delta(t)] L[δ(t)]=?
解 . δ ( t ) = 1 ′ ( t ) 由微分定理 L [ δ ( t ) ] = L [ 1 ′ ( t ) ] = s ⋅ 1 s − 1 ′ ( 0 − ) = 1 − 0 = 0 \begin{aligned} 解. \qquad \qquad \delta(t) &= 1'(t)\\ 由微分定理 \quad L[\delta(t)] &= L[1'(t)]=s·\frac{1}{s}-1'(0^-) = 1-0=0 \end{aligned} 解.δ(t)由微分定理L[δ(t)]=1′(t)=L[1′(t)]=s⋅s1−1′(0−)=1−0=0
求 L [ cos ( w t ) ] L[\cos(wt)] L[cos(wt)]=?
解 . cos w t = 1 w [ s i n ′ w t ] 由微分定理 L [ c o s w t ] = 1 w L [ s i n ′ w t ] = 1 w ⋅ s ⋅ w w 2 + s 2 = s w 2 + s 2 \begin{aligned} 解.\qquad \qquad \cos{wt}&=\frac{1}{w}[sin'wt]\\ 由微分定理 \qquad L[coswt]&=\frac{1}{w}L[sin'wt]=\frac{1}{w}·s·\frac{w}{w^2+s^2}=\frac{s}{w^2+s^2} \end{aligned} 解.coswt由微分定理L[coswt]=w1[sin′wt]=w1L[sin′wt]=w1⋅s⋅w2+s2w=w2+s2s
求 L [ t ] L[t] L[t]=?
解 . t = ∫ 1 ( t ) d t 由积分定理 L [ t ] = L [ ∫ 1 ( t ) d t ] = 1 s ⋅ 1 s + 1 s ⋅ f ( − 1 ) ( 0 ) = 1 s ⋅ 1 s + 1 s ⋅ t ∣ t = 0 = 1 s 2 \begin{aligned} 解.\qquad \qquad t&=\int1(t)dt\\ 由积分定理\qquad L[t] &= L[\int1(t)dt]=\frac{1}{s}·\frac{1}{s}+\frac{1}{s}·f^{(-1)}(0)\\ &=\frac{1}{s}·\frac{1}{s}+\frac{1}{s}·t|_{t=0}=\frac{1}{s^2} \end{aligned} 解.t由积分定理L[t]=∫1(t)dt=L[∫1(t)dt]=s1⋅s1+s1⋅f(−1)(0)=s1⋅s1+s1⋅t∣t=0=s21
求 L [ t 2 2 ] L[\frac{t^2}{2}] L[2t2]=?
解 . t 2 2 = ∫ t d t 由积分定理 L [ t 2 2 ] = L [ ∫ t d t ] = 1 s ⋅ 1 s 2 + 1 s ⋅ f ( − 1 ) ( 0 ) = 1 s 3 + 1 s ⋅ t 2 2 ∣ t = 0 = 1 s 3 \begin{aligned} 解. \qquad \qquad \frac{t^2}{2}&=\int tdt\\ 由积分定理 \qquad L[\frac{t^2}{2}]&=L[\int tdt]=\frac{1}{s}·\frac{1}{s^2}+\frac{1}{s}·f^{(-1)}(0)\\ &=\frac{1}{s^3}+\frac{1}{s}·\frac{t^2}{2}|_{t=0}=\frac{1}{s^3} \end{aligned} 解.2t2由积分定理L[2t2]=∫tdt=L[∫tdt]=s1⋅s21+s1⋅f(−1)(0)=s31+s1⋅2t2∣t=0=s31
f ( t ) = { 0 t < 0 1 0 < t < a , 0 t > a f(t)=\begin{cases}0\quad t<0\\1\quad0<t<a,\\0\quad t>a \end{cases} f(t)=⎩ ⎨ ⎧0t<010<t<a,0t>a 求F(s)
解 . f ( t ) = 1 ( t ) − 1 ( t − a ) 由实位移定理 L [ f ( t ) ] = L [ 1 ( t ) − 1 ( t − a ) ] = 1 s − 1 s ⋅ e − a s = 1 s ( 1 − e − a s ) \begin{aligned} 解. \qquad \qquad f(t) &= 1(t)-1(t-a)\\ 由实位移定理 \qquad L[f(t)]&=L[1(t)-1(t-a)] = \frac{1}{s}-\frac{1}{s}·e^{-as}\\ &=\frac{1}{s}(1-e^{-as}) \end{aligned} 解.f(t)由实位移定理L[f(t)]=1(t)−1(t−a)=L[1(t)−1(t−a)]=s1−s1⋅e−as=s1(1−e−as)
求 L [ e a t ] L[e^{at}] L[eat] =?
解 . e a t = 1 ( t ) ⋅ e a t 由复位移定理 L [ e a t ] = L [ 1 ( t ) ⋅ e a t ] = 1 s ^ ∣ s ^ → s − a = 1 s − a \begin{aligned} 解.\qquad \qquad e^{at} &= 1(t)·e^{at}\quad \\ 由复位移定理 \qquad L[e^{at}] &= L[1(t)·e^{at}]=\frac{1}{\widehat s}|_{\widehat s \rightarrow s-a}=\frac{1}{s-a} \end{aligned} 解.eat由复位移定理L[eat]=1(t)⋅eat=L[1(t)⋅eat]=s 1∣s →s−a=s−a1
求 L [ e − 3 t ⋅ cos 5 t ] L[e^{-3t}·\cos5t] L[e−3t⋅cos5t]=?
由复位移定理 L [ e − 3 t ⋅ cos 5 t ] = s ^ s ^ 2 + 25 ∣ s ^ → s + 3 = s + 3 ( s + 3 ) 2 + 25 \begin{aligned} 由复位移定理\qquad L[e^{-3t}·\cos5t]=\frac{\widehat s}{\widehat s^2+25}|_{\widehat s\rightarrow s+3}=\frac{s+3}{(s+3)^2+25} \end{aligned} 由复位移定理L[e−3t⋅cos5t]=s 2+25s ∣s →s+3=(s+3)2+25s+3
求 L [ e − 2 t cos ( 5 t − π 3 ) ] L[e^{-2t}\cos(5t-\frac{\pi}{3})] L[e−2tcos(5t−3π)]=?
由复位移定理和实位移定理 L [ e − 2 t cos ( 5 t − π 3 ) ] = L [ e − 2 t c o s ( 5 ( t − π 15 ) ) ] = e − π 15 s ^ ⋅ F ( s ^ ) ∣ s ^ → s + 2 = e − π 15 s ^ ⋅ s ^ s ^ 2 + 25 ∣ s ^ → s + 2 = e − π 15 t ⋅ s + 2 ( s + 2 ) 2 + 25 \begin{aligned} 由复位移定理和实位移定理 \qquad L[e^{-2t}\cos(5t-\frac{\pi}{3})]&=L[e^{-2t}cos(5(t-\frac{\pi}{15}))]\\ &=e^{-\frac{\pi}{15}\widehat s}·F(\widehat s)|_{\widehat s\rightarrow s+2}=e^{-\frac{\pi}{15}\widehat s}·\frac{\widehat s}{\widehat s^2+25}|_{\widehat s\rightarrow s+2}\\&=e^{-\frac{\pi}{15}t}·\frac{s+2}{(s+2)^2+25}\\ \end{aligned} 由复位移定理和实位移定理L[e−2tcos(5t−3π)]=L[e−2tcos(5(t−15π))]=e−15πs ⋅F(s )∣s →s+2=e−15πs ⋅s 2+25s ∣s →s+2=e−15πt⋅(s+2)2+25s+2
初值定理例子 { f ( t ) = t F ( s ) = 1 s 2 \begin{cases}f(t)=t\\F(s)=\frac{1}{s^2}\end{cases} {f(t)=tF(s)=s21 求 f ( 0 ) f(0) f(0)
由初值定理 f ( 0 ) = lim t → 0 f ( t ) = lim s → ∞ s ⋅ F ( s ) = lim s → ∞ 1 s = 0 \begin{aligned} 由初值定理\qquad f(0)=\lim_{t\rightarrow0}f(t)=\lim_{s\rightarrow\infty}s·F(s)=\lim_{s\rightarrow\infty}\frac{1}{s}=0 \end{aligned} 由初值定理f(0)=t→0limf(t)=s→∞lims⋅F(s)=s→∞lims1=0
已知 F ( s ) = 1 s ( s + a ) ( s + b ) F(s)=\frac{1}{s(s+a)(s+b)} F(s)=s(s+a)(s+b)1 求 f ( ∞ ) f(\infty) f(∞)?
由终值定理 f ( ∞ ) = lim s → 0 s ⋅ F ( s ) = lim s → 0 s ⋅ 1 s ( s + a ) ( s + b ) = 1 a b \begin{aligned} 由终值定理 \qquad f(\infty) = \lim_{s\rightarrow0}s·F(s)=\lim_{s\rightarrow0}s·\frac{1}{s(s+a)(s+b)}=\frac{1}{ab} \end{aligned} 由终值定理f(∞)=s→0lims⋅F(s)=s→0lims⋅s(s+a)(s+b)1=ab1
已知 F ( s ) = w w 2 + s 2 F(s)=\frac{w}{w^2+s^2} F(s)=w2+s2w求 f ( ∞ ) f(\infty) f(∞)?
由终值定理 f ( ∞ ) = lim s → 0 s ⋅ F ( s ) = lim s → 0 s ⋅ w w 2 + s 2 = 0 \begin{aligned} 由终值定理\qquad f(\infty)=\lim_{s\rightarrow0}s·F(s)=\lim_{s\rightarrow0}s·\frac{w}{w^2+s^2}=0 \end{aligned} 由终值定理f(∞)=s→0lims⋅F(s)=s→0lims⋅w2+s2w=0
总结
拉氏变换的定义: F ( s ) = ∫ 0 ∞ f ( t ) ⋅ e − s t d t F(s)=\int_0^\infty f(t)·e^{-st}dt F(s)=∫0∞f(t)⋅e−stdt
常见函数的拉普拉斯变换
f ( t ) f(t) f(t) | F ( s ) F(s) F(s) | |
---|---|---|
单位脉冲 | δ ( t ) \delta(t) δ(t) | 1 |
单位阶跃 | 1 ( t ) 1(t) 1(t) | 1 s \frac{1}{s} s1 |
单位斜坡 | t t t | 1 s 2 \frac{1}{s^2} s21 |
单位加速度 | t 2 2 \frac{t^2}{2} 2t2 | 1 s 3 \frac{1}{s^3} s31 |
指数函数 | e − a t e^{-at} e−at | 1 s + a \frac{1}{s+a} s+a1 |
正弦函数 | sin w t \sin wt sinwt | w s 2 + w 2 \frac{w}{s^2+w^2} s2+w2w |
余弦函数 | cos w t \cos wt coswt | s s 2 + w 2 \frac{s}{s^2+w^2} s2+w2s |
L变换重要定理
线性性质 | L [ a f 1 ( t ) ] ± b f 2 ( t ) = a F 1 ( s ) ± b F 2 ( s ) L[af_1(t)]\pm bf_2(t)=aF_1(s)\pm bF_2(s) L[af1(t)]±bf2(t)=aF1(s)±bF2(s) |
---|---|
微分定理 | L [ f ′ ( t ) ] = s ⋅ F ( s ) − f ( 0 ) L[f'(t)]=s·F(s)-f(0) L[f′(t)]=s⋅F(s)−f(0) |
积分定理 | L [ ∫ f ( t ) d t ] = 1 s ⋅ F ( s ) + 1 s f ( − 1 ) ( 0 ) L[\int f(t)dt]=\frac{1}{s}·F(s)+\frac{1}{s}f^{(-1)}(0) L[∫f(t)dt]=s1⋅F(s)+s1f(−1)(0) |
实位移定理 | L [ f ( t − τ ) ] = e − τ s ⋅ F ( s ) L[f(t-\tau)]=e^{-\tau s}·F(s) L[f(t−τ)]=e−τs⋅F(s) |
复位移定理 | L [ e A t f ( t ) ] = F ( s − A ) L[e^{At}f(t)]=F(s-A) L[eAtf(t)]=F(s−A) |
初值定理 | lim t → 0 f ( t ) = lim s → ∞ s ⋅ F ( s ) \lim_{t\rightarrow0}f(t)=\lim_{s\rightarrow\infty}s·F(s) limt→0f(t)=lims→∞s⋅F(s) |
终值定理 | lim t → ∞ f ( t ) = lim s → 0 s ⋅ F ( s ) \lim_{t\rightarrow\infty}f(t)=\lim_{s\rightarrow0}s·F(s) limt→∞f(t)=lims→0s⋅F(s) |