02_控制系统的数学模型&拉普拉斯变换概念及常用定理(有简单证明过程)

控制系统的数学模型

基本概念

  • 数学模型: 描述系统输入、输出变量以及内部各变量之间关系的数学表达式

  • 建模方法:

    • 解析法(机理分析法)

      根据系统工作所依据的物理定律列写运动方程

    • 实验法(系统辨识法)

      给系统施加某种测试信号, 记录输出响应, 并用适当的数学模型去逼近系统的输入输出特性

  • 线性定常系统微分方程的一般形式

在这里插入图片描述

  • 非线性定常系统
    d 2 c ( t ) d t 2 + 2 d c ( t ) d t c ( t ) + 5 = 2 d c ( t ) d t r ( t ) \frac{d^2c(t)}{dt^2}+2\frac{dc(t)}{dt}c(t)+5=2\frac{dc(t)}{dt}r(t) dt2d2c(t)+2dtdc(t)c(t)+5=2dtdc(t)r(t)

  • 线性时变系统

d c ( t ) d t + cos ⁡ ( t ) c ( t ) = 2 r ( t ) \frac{dc(t)}{dt}+\cos(t)c(t)=2r(t) dtdc(t)+cos(t)c(t)=2r(t)

  • 非线性时变系统

d 3 c ( t ) d t 3 − e − t d c ( t ) d t + 6 c ( t ) = t r ( t ) \frac{d^3c(t)}{dt^3}-e^{-t}\frac{dc(t)}{dt}+6c(t)=tr(t) dt3d3c(t)etdtdc(t)+6c(t)=tr(t)

  • 非线性系统微分方程的线性化: 利用泰勒公式展开取近似

拉普拉斯变换内容复习

线性定常微分方程求解

在这里插入图片描述

复数相关概念

  • 复数:

S = σ + j ω S = \sigma+j\omega S=σ+

  • 复函数:

F ( s ) = F x ( S ) + j F y ( s ) F(s) = F_x(S) + jF_y(s) F(s)=Fx(S)+jFy(s)

∣ F ( S ) ∣ = F x 2 + F y 2 |F(S)| = \sqrt{{F_x}^2+{F_y}^2} F(S)=Fx2+Fy2

  • 相角

∠ F ( S ) = arctan ⁡ F y F x \angle F(S) = \arctan{\frac{F_y}{F_x}} F(S)=arctanFxFy

  • 复数的共轭

F ( S ) ‾ = F x − j F y \overline {F(S)} = F_x-jF_y F(S)=FxjFy

  • 解析

    若F(S)在s点的各阶导数都存在, 则F(s)在s点解析

拉氏变换的定义

L [ f ( t ) ] = F ( S ) = ∫ 0 ∞ f ( t ) ⋅ e − s t d t   =     { F ( s )       像 f ( t )     原像 L[f(t)]=F(S)=\int_0^{\infty}f(t)·e^{-st}dt \ = \ \ \ \begin{cases} F(s)\ \ \ \ \ \ 像\\f(t)\ \ \ \ 原像\\ \end{cases} L[f(t)]=F(S)=0f(t)estdt =   {F(s)      f(t)    原像

常见函数的拉氏变换

  • 阶跃函数 f ( t ) = { 1        t ≥ 0 0        t < 0 f(t)=\begin{cases} 1\ \ \ \ \ \ t\geq0\\0\ \ \ \ \ \ t<0\end{cases} f(t)={1      t00      t<0
    L [ 1 ( t ) ] = ∫ 0 ∞ 1 ⋅ e − s t d t = − 1 s [ e − s t ] 0 ∞ = − 1 s ( 0 − 1 ) = 1 s L[1(t)] = \int_0^\infty1·e^{-st}dt = \frac{-1}{s}[e^{-st}]_0^{\infty} = \frac{-1}{s}(0-1)=\frac{1}{s} L[1(t)]=01estdt=s1[est]0=s1(01)=s1

  • 指数函数 f ( t ) = e − α t f(t)=e^{-\alpha t} f(t)=eαt
    L [ f ( t ) ] = ∫ 0 ∞ e − α t ⋅ e − s t d t = ∫ 0 ∞ e − ( α + s ) t d t = − 1 s + α [ e − ( s + α ) t ] 0 ∞ = − 1 s + α ( 0 − 1 ) = 1 s + α \begin{aligned}L[f(t)] &= \int_0^\infty e^{-\alpha t}·e^{-st}dt = \int_0^\infty e^{-(\alpha+s)t}dt\\ &=\frac{-1}{s+\alpha}[e^{-(s+\alpha)t}]_0^\infty=\frac{-1}{s+\alpha}(0-1)=\frac{1}{s+\alpha} \end{aligned} L[f(t)]=0eαtestdt=0e(α+s)tdt=s+α1[e(s+α)t]0=s+α1(01)=s+α1

  • 正弦函数 f ( t ) = { 0 t < 0 sin ⁡ ω t t ≥ 0 f(t)=\begin{cases}0\quad t<0\\\sin{\omega t}\quad t\geq0\end{cases} f(t)={0t<0sinωtt0
    L [ f ( t ) ] = ∫ 0 ∞ sin ⁡ ω t ⋅ e − s t d t = 1 2 j [ e j w t − e − j w t ] ⋅ e − s t d t = ∫ 0 ∞ 1 2 j [ e − ( s − j w ) t − e − ( s + j w ) t ] d t = 1 2 j [ − 1 s − j w e − ( s − j w ) ∣ 0 ∞ − − 1 s + j w e − ( s + j w ) ∣ 0 ∞ ] = 1 2 j [ 1 s − j w − 1 s + j w ] = 1 2 j ⋅ 2 j w s 2 + w 2 = w s 2 + w 2 \begin{aligned}L[f(t)] &= \int_0^\infty \sin{\omega t}·e^{-st}dt=\frac{1}{2j}[e^{jwt}-e^{-jwt}]·e^{-st}dt\\ &=\int_0^\infty \frac{1}{2j}[e^{-(s-jw)t}-e^{-(s+jw)t}]dt\\&=\frac{1}{2j}[\frac{-1}{s-jw}e^{-(s-jw)}|_0^\infty -\frac{-1}{s+jw}e^{-(s+jw)}|_0^\infty]\\&=\frac{1}{2j}[\frac{1}{s-jw}-\frac{1}{s+jw}]=\frac{1}{2j}·\frac{2jw}{s^2+w^2}=\frac{w}{s^2+w^2} \end{aligned} L[f(t)]=0sinωtestdt=2j1[ejwtejwt]estdt=02j1[e(sjw)te(s+jw)t]dt=2j1[sjw1e(sjw)0s+jw1e(s+jw)0]=2j1[sjw1s+jw1]=2j1s2+w22jw=s2+w2w

拉氏变换的几个重要定理

  • 线性性质: L [ α f 1 ( t ) ± b f 2 ( t ) ] = α F 1 ( s ) ± b F 2 ( s ) L[\alpha f_1(t)\pm bf_2(t)]=\alpha F_1(s)\pm bF_2(s) L[αf1(t)±bf2(t)]=αF1(s)±bF2(s)

  • 微分定理: L [ f ′ ( t ) ] = s ⋅ F ( s ) − f ( 0 ) L[f'(t)] = s·F(s)-f(0) L[f(t)]=sF(s)f(0) s在时域中相当于求导

    证明:
    左 = ∫ 0 ∞ f ′ ( t ) e − s t d t = ∫ 0 ∞ e − s d f ( t ) = [ e − s t f ( t ) ] 0 ∞ − ∫ 0 ∞ f ( t ) d e − s t = [ 0 − f ( 0 ) ] + s ∫ f ( t ) e − s t d t = s F ( s ) − f ( 0 ) = 右 L [ f ( n ) ( t ) ] = s n F ( s ) − s n − 1 f ( 0 ) − s n − 2 f ′ ( 0 ) − ⋅ ⋅ ⋅ s f ( n − 2 ) ( 0 ) − f ( n − 1 ) ( 0 ) 0 初条件下有 : L [ f ( n ) ( t ) ] = s n F ( s ) \begin{aligned}左&=\int_0^\infty f'(t)e^{-st}dt = \int_0^\infty e^{-s}df(t)=[e^{-st}f(t)]_0^\infty-\int_0^\infty f(t)de^{-st}\\ &=[0-f(0)]+s\int f(t)e^{-st}dt=sF(s)-f(0)=右 \end{aligned}\\ L[f^{(n)}(t)] = s^nF(s)-s^{n-1}f(0)-s^{n-2}f'(0)-···sf^{(n-2)}(0)-f^{(n-1)}(0)\\ 0初条件下有: L[f^{(n)}(t)]=s^nF(s) =0f(t)estdt=0esdf(t)=[estf(t)]00f(t)dest=[0f(0)]+sf(t)estdt=sF(s)f(0)=L[f(n)(t)]=snF(s)sn1f(0)sn2f(0)⋅⋅⋅sf(n2)(0)f(n1)(0)0初条件下有:L[f(n)(t)]=snF(s)

  • 积分定理: L [ ∫ f ( t ) d t ] = 1 s ⋅ F ( s ) + 1 s f − 1 ( 0 ) L[\int f(t)dt]=\frac{1}{s}·F(s)+\frac{1}{s}f^{-1}(0) L[f(t)dt]=s1F(s)+s1f1(0)

零初始条件下有 : L [ ∫ f ( t ) d t ] = 1 s F ( s ) 进一步有 : L [ ∫ ∫ ∫ . . . ∫ f ( t ) d t n ] = 1 s n F ( s ) + 1 s n f − 1 ( 0 ) + 1 s n − 1 f − 2 ( 0 ) + . . . + 1 s f − n ( 0 ) 零初始条件下有: L[\int f(t)dt] = \frac{1}{s}F(s)\\ 进一步有: L[\int\int\int...\int f(t)dt^n] = \frac{1}{s^n}F(s)+\frac{1}{s^n}f^{-1}(0)+\frac{1}{s^{n-1}}f^{-2}(0)+...+ \frac{1}{s}f^{-n}(0) 零初始条件下有:L[f(t)dt]=s1F(s)进一步有:L[∫∫∫...f(t)dtn]=sn1F(s)+sn1f1(0)+sn11f2(0)+...+s1fn(0)

  • 实位移定理: L [ f ( t − τ 0 ) ] = e − τ 0 s ⋅ F ( s ) L[f(t-\tau_0)]=e^{-\tau_0 s}·F(s) L[f(tτ0)]=eτ0sF(s)

证明:
左 = ∫ 0 ∞ f ( t − τ 0 ) ⋅ e − s t d t 令 t − τ 0 = τ = ∫ τ 0 ∞ f ( τ ) ⋅ e − s ( τ + τ 0 ) d τ = e − s τ 0 ∫ τ 0 ∞ f ( τ ) e − s τ d τ = 右 \begin{aligned} 左&=\int_0^\infty f(t-\tau_0)·e^{-st}dt\quad令t-\tau_0=\tau\\&=\int_{\tau_0}^\infty f(\tau)·e^{-s(\tau + \tau_0)}d\tau=e^{-s\tau_0}\int_{\tau_0}^\infty f(\tau) e^{-s\tau}d\tau=右 \end{aligned} =0f(tτ0)estdttτ0=τ=τ0f(τ)es(τ+τ0)dτ=esτ0τ0f(τ)esτdτ=

  • 复位移定理: L [ e A ⋅ t f ( t ) ] = F ( s − A ) L[e^{A·t}f(t)]=F(s-A) L[eAtf(t)]=F(sA)

证明:
左 = ∫ 0 ∞ e A ⋅ t f ( t ) ⋅ e − s t d t = ∫ 0 ∞ f ( t ) e − ( s − A ) t d t 令 s − A = s ^ = ∫ 0 ∞ f ( t ) − s ^ t d t = F ( s ^ ) = F ( s − A ) = 右 \begin{aligned} 左&=\int_0^\infty e^{A·t}f(t)·e^{-st}dt=\int_0^\infty f(t)e^{-(s-A)t}dt \quad 令s-A=\widehat{s}\\&=\int_0^\infty f(t)^{-\widehat{s}t}dt=F(\widehat{s})=F(s-A)=右 \end{aligned} =0eAtf(t)estdt=0f(t)e(sA)tdtsA=s =0f(t)s tdt=F(s )=F(sA)=

  • 初值定理: lim ⁡ t → 0 f ( t ) = lim ⁡ s → ∞ s ⋅ F ( s ) \lim_{t\rightarrow0}f(t)=\lim_{s\rightarrow \infty }s·F(s) limt0f(t)=limssF(s)

证明:
由微分定理 ∫ 0 ∞ d f ( t ) d t ⋅ e − s t d t = s ⋅ F ( s ) − f ( 0 ) lim ⁡ s → ∞ ∫ 0 ∞ d f ( t ) d t ⋅ e − s t d t = lim ⁡ s → ∞ [ s ⋅ F ( s ) − f ( 0 ) ] 又 lim ⁡ s → ∞ ∫ 0 ∞ d f ( t ) d t ⋅ e − s t = ∫ 0 + ∞ d f ( t ) d t ⋅ lim ⁡ s → ∞ e − s t d t = 0 ( 分部积分 ) ∴ lim ⁡ s → ∞ [ s ⋅ F ( s ) − f ( 0 + ) ] = 0 即 f ( 0 + ) = lim ⁡ t → 0 f ( t ) = s ⋅ F ( s ) \begin{aligned} 由微分定理 \quad \int_0^\infty \frac{df(t)}{dt}·e^{-st}dt&=s·F(s)-f(0)\\ \lim_{s\rightarrow \infty}\int_0^\infty \frac{df(t)}{dt}·e^{-st}dt &=\lim_{s\rightarrow \infty}[s·F(s)-f(0)]\\ 又\lim_{s\rightarrow \infty}\int_0^\infty \frac{df(t)}{dt}·e^{-st}&=\int_{0_+}^\infty \frac{df(t)}{dt}·\lim_{s\rightarrow \infty}e^{-st}dt=0(分部积分)\\ \therefore\lim_{s\rightarrow \infty}[s·F(s)-f(0_+)] &= 0\\ 即\quad f(0_+)=\lim_{t\rightarrow0}f(t) &= s·F(s)\end{aligned} 由微分定理0dtdf(t)estdtslim0dtdf(t)estdtslim0dtdf(t)estslim[sF(s)f(0+)]f(0+)=t0limf(t)=sF(s)f(0)=slim[sF(s)f(0)]=0+dtdf(t)slimestdt=0(分部积分)=0=sF(s)

  • 终值定理: lim ⁡ t → ∞ f ( t ) = lim ⁡ s → 0 s ⋅ F ( s ) \lim_{t\rightarrow \infty}f(t)=\lim_{s\rightarrow0}s·F(s) limtf(t)=lims0sF(s) (终值确实存在时)

证明:
由微分定理 ∫ 0 ∞ d f ( t ) d t e − s t d t = s ⋅ F ( s ) − f ( 0 ) lim ⁡ s → 0 ∫ 0 ∞ d f ( t ) d t ⋅ e − s t d t = lim ⁡ s → 0 [ s ⋅ F ( s ) − f ( 0 ) ] 又 lim ⁡ s → 0 ∫ 0 ∞ d f ( t ) d t ⋅ e − s t d t = ∫ 0 ∞ d f ( t ) d t lim ⁡ s → 0 e − s t d t = ∫ 0 ∞ d f ( t ) = lim ⁡ t → ∞ ∫ 0 t d f ( t ) = lim ⁡ t → ∞ [ f ( t ) − f ( 0 ) ] ∴ lim ⁡ t → ∞ [ f ( t ) − f ( 0 ) ] = lim ⁡ s → 0 [ s ⋅ F ( s ) − f ( 0 ) ] 即 lim ⁡ t → ∞ f ( t ) = lim ⁡ s → 0 s ⋅ F ( s ) \begin{aligned} 由微分定理\quad \int_0^\infty \frac{df(t)}{dt}e^{-st}dt &= s·F(s)-f(0)\\ \lim_{s\rightarrow0}\int_0^\infty \frac{df(t)}{dt}·e^{-st}dt&=\lim_{s\rightarrow0}[s·F(s)-f(0)]\\ 又\lim_{s\rightarrow0}\int_0^\infty \frac{df(t)}{dt}·e^{-st}dt&=\int_0^\infty \frac{df(t)}{dt}\lim_{s\rightarrow0}e^{-st}dt=\int_0^\infty df(t)=\lim_{t\rightarrow \infty}\int_0^tdf(t)\\ &=\lim_{t\rightarrow \infty}[f(t)-f(0)]\\ \therefore \lim_{t\rightarrow \infty}[f(t)-f(0)] &=\lim_{s\rightarrow0}[s·F(s)-f(0)]\\ 即\lim_{t\rightarrow \infty}f(t)&=\lim_{s\rightarrow0}s·F(s) \end{aligned} 由微分定理0dtdf(t)estdts0lim0dtdf(t)estdts0lim0dtdf(t)estdttlim[f(t)f(0)]tlimf(t)=sF(s)f(0)=s0lim[sF(s)f(0)]=0dtdf(t)s0limestdt=0df(t)=tlim0tdf(t)=tlim[f(t)f(0)]=s0lim[sF(s)f(0)]=s0limsF(s)

重要定理例题:

L [ δ ( t ) ] L[\delta(t)] L[δ(t)]=?

解 . δ ( t ) = 1 ′ ( t ) 由微分定理 L [ δ ( t ) ] = L [ 1 ′ ( t ) ] = s ⋅ 1 s − 1 ′ ( 0 − ) = 1 − 0 = 0 \begin{aligned} 解. \qquad \qquad \delta(t) &= 1'(t)\\ 由微分定理 \quad L[\delta(t)] &= L[1'(t)]=s·\frac{1}{s}-1'(0^-) = 1-0=0 \end{aligned} .δ(t)由微分定理L[δ(t)]=1(t)=L[1(t)]=ss11(0)=10=0

L [ cos ⁡ ( w t ) ] L[\cos(wt)] L[cos(wt)]=?

解 . cos ⁡ w t = 1 w [ s i n ′ w t ] 由微分定理 L [ c o s w t ] = 1 w L [ s i n ′ w t ] = 1 w ⋅ s ⋅ w w 2 + s 2 = s w 2 + s 2 \begin{aligned} 解.\qquad \qquad \cos{wt}&=\frac{1}{w}[sin'wt]\\ 由微分定理 \qquad L[coswt]&=\frac{1}{w}L[sin'wt]=\frac{1}{w}·s·\frac{w}{w^2+s^2}=\frac{s}{w^2+s^2} \end{aligned} .coswt由微分定理L[coswt]=w1[sinwt]=w1L[sinwt]=w1sw2+s2w=w2+s2s

L [ t ] L[t] L[t]=?

解 . t = ∫ 1 ( t ) d t 由积分定理 L [ t ] = L [ ∫ 1 ( t ) d t ] = 1 s ⋅ 1 s + 1 s ⋅ f ( − 1 ) ( 0 ) = 1 s ⋅ 1 s + 1 s ⋅ t ∣ t = 0 = 1 s 2 \begin{aligned} 解.\qquad \qquad t&=\int1(t)dt\\ 由积分定理\qquad L[t] &= L[\int1(t)dt]=\frac{1}{s}·\frac{1}{s}+\frac{1}{s}·f^{(-1)}(0)\\ &=\frac{1}{s}·\frac{1}{s}+\frac{1}{s}·t|_{t=0}=\frac{1}{s^2} \end{aligned} .t由积分定理L[t]=1(t)dt=L[1(t)dt]=s1s1+s1f(1)(0)=s1s1+s1tt=0=s21

L [ t 2 2 ] L[\frac{t^2}{2}] L[2t2]=?

解 . t 2 2 = ∫ t d t 由积分定理 L [ t 2 2 ] = L [ ∫ t d t ] = 1 s ⋅ 1 s 2 + 1 s ⋅ f ( − 1 ) ( 0 ) = 1 s 3 + 1 s ⋅ t 2 2 ∣ t = 0 = 1 s 3 \begin{aligned} 解. \qquad \qquad \frac{t^2}{2}&=\int tdt\\ 由积分定理 \qquad L[\frac{t^2}{2}]&=L[\int tdt]=\frac{1}{s}·\frac{1}{s^2}+\frac{1}{s}·f^{(-1)}(0)\\ &=\frac{1}{s^3}+\frac{1}{s}·\frac{t^2}{2}|_{t=0}=\frac{1}{s^3} \end{aligned} .2t2由积分定理L[2t2]=tdt=L[tdt]=s1s21+s1f(1)(0)=s31+s12t2t=0=s31

f ( t ) = { 0 t < 0 1 0 < t < a , 0 t > a f(t)=\begin{cases}0\quad t<0\\1\quad0<t<a,\\0\quad t>a \end{cases} f(t)= 0t<010<t<a,0t>a 求F(s)

解 . f ( t ) = 1 ( t ) − 1 ( t − a ) 由实位移定理 L [ f ( t ) ] = L [ 1 ( t ) − 1 ( t − a ) ] = 1 s − 1 s ⋅ e − a s = 1 s ( 1 − e − a s ) \begin{aligned} 解. \qquad \qquad f(t) &= 1(t)-1(t-a)\\ 由实位移定理 \qquad L[f(t)]&=L[1(t)-1(t-a)] = \frac{1}{s}-\frac{1}{s}·e^{-as}\\ &=\frac{1}{s}(1-e^{-as}) \end{aligned} .f(t)由实位移定理L[f(t)]=1(t)1(ta)=L[1(t)1(ta)]=s1s1eas=s1(1eas)

L [ e a t ] L[e^{at}] L[eat] =?

解 . e a t = 1 ( t ) ⋅ e a t 由复位移定理 L [ e a t ] = L [ 1 ( t ) ⋅ e a t ] = 1 s ^ ∣ s ^ → s − a = 1 s − a \begin{aligned} 解.\qquad \qquad e^{at} &= 1(t)·e^{at}\quad \\ 由复位移定理 \qquad L[e^{at}] &= L[1(t)·e^{at}]=\frac{1}{\widehat s}|_{\widehat s \rightarrow s-a}=\frac{1}{s-a} \end{aligned} .eat由复位移定理L[eat]=1(t)eat=L[1(t)eat]=s 1s sa=sa1

L [ e − 3 t ⋅ cos ⁡ 5 t ] L[e^{-3t}·\cos5t] L[e3tcos5t]=?

由复位移定理 L [ e − 3 t ⋅ cos ⁡ 5 t ] = s ^ s ^ 2 + 25 ∣ s ^ → s + 3 = s + 3 ( s + 3 ) 2 + 25 \begin{aligned} 由复位移定理\qquad L[e^{-3t}·\cos5t]=\frac{\widehat s}{\widehat s^2+25}|_{\widehat s\rightarrow s+3}=\frac{s+3}{(s+3)^2+25} \end{aligned} 由复位移定理L[e3tcos5t]=s 2+25s s s+3=(s+3)2+25s+3

L [ e − 2 t cos ⁡ ( 5 t − π 3 ) ] L[e^{-2t}\cos(5t-\frac{\pi}{3})] L[e2tcos(5t3π)]=?

由复位移定理和实位移定理 L [ e − 2 t cos ⁡ ( 5 t − π 3 ) ] = L [ e − 2 t c o s ( 5 ( t − π 15 ) ) ] = e − π 15 s ^ ⋅ F ( s ^ ) ∣ s ^ → s + 2 = e − π 15 s ^ ⋅ s ^ s ^ 2 + 25 ∣ s ^ → s + 2 = e − π 15 t ⋅ s + 2 ( s + 2 ) 2 + 25 \begin{aligned} 由复位移定理和实位移定理 \qquad L[e^{-2t}\cos(5t-\frac{\pi}{3})]&=L[e^{-2t}cos(5(t-\frac{\pi}{15}))]\\ &=e^{-\frac{\pi}{15}\widehat s}·F(\widehat s)|_{\widehat s\rightarrow s+2}=e^{-\frac{\pi}{15}\widehat s}·\frac{\widehat s}{\widehat s^2+25}|_{\widehat s\rightarrow s+2}\\&=e^{-\frac{\pi}{15}t}·\frac{s+2}{(s+2)^2+25}\\ \end{aligned} 由复位移定理和实位移定理L[e2tcos(5t3π)]=L[e2tcos(5(t15π))]=e15πs F(s )s s+2=e15πs s 2+25s s s+2=e15πt(s+2)2+25s+2

初值定理例子 { f ( t ) = t F ( s ) = 1 s 2 \begin{cases}f(t)=t\\F(s)=\frac{1}{s^2}\end{cases} {f(t)=tF(s)=s21 f ( 0 ) f(0) f(0)

由初值定理 f ( 0 ) = lim ⁡ t → 0 f ( t ) = lim ⁡ s → ∞ s ⋅ F ( s ) = lim ⁡ s → ∞ 1 s = 0 \begin{aligned} 由初值定理\qquad f(0)=\lim_{t\rightarrow0}f(t)=\lim_{s\rightarrow\infty}s·F(s)=\lim_{s\rightarrow\infty}\frac{1}{s}=0 \end{aligned} 由初值定理f(0)=t0limf(t)=slimsF(s)=slims1=0

已知 F ( s ) = 1 s ( s + a ) ( s + b ) F(s)=\frac{1}{s(s+a)(s+b)} F(s)=s(s+a)(s+b)1 f ( ∞ ) f(\infty) f()?

由终值定理 f ( ∞ ) = lim ⁡ s → 0 s ⋅ F ( s ) = lim ⁡ s → 0 s ⋅ 1 s ( s + a ) ( s + b ) = 1 a b \begin{aligned} 由终值定理 \qquad f(\infty) = \lim_{s\rightarrow0}s·F(s)=\lim_{s\rightarrow0}s·\frac{1}{s(s+a)(s+b)}=\frac{1}{ab} \end{aligned} 由终值定理f()=s0limsF(s)=s0limss(s+a)(s+b)1=ab1

已知 F ( s ) = w w 2 + s 2 F(s)=\frac{w}{w^2+s^2} F(s)=w2+s2w f ( ∞ ) f(\infty) f()?

由终值定理 f ( ∞ ) = lim ⁡ s → 0 s ⋅ F ( s ) = lim ⁡ s → 0 s ⋅ w w 2 + s 2 = 0 \begin{aligned} 由终值定理\qquad f(\infty)=\lim_{s\rightarrow0}s·F(s)=\lim_{s\rightarrow0}s·\frac{w}{w^2+s^2}=0 \end{aligned} 由终值定理f()=s0limsF(s)=s0limsw2+s2w=0

总结

拉氏变换的定义: F ( s ) = ∫ 0 ∞ f ( t ) ⋅ e − s t d t F(s)=\int_0^\infty f(t)·e^{-st}dt F(s)=0f(t)estdt

常见函数的拉普拉斯变换

f ( t ) f(t) f(t) F ( s ) F(s) F(s)
单位脉冲 δ ( t ) \delta(t) δ(t)1
单位阶跃 1 ( t ) 1(t) 1(t) 1 s \frac{1}{s} s1
单位斜坡 t t t 1 s 2 \frac{1}{s^2} s21
单位加速度 t 2 2 \frac{t^2}{2} 2t2 1 s 3 \frac{1}{s^3} s31
指数函数 e − a t e^{-at} eat 1 s + a \frac{1}{s+a} s+a1
正弦函数 sin ⁡ w t \sin wt sinwt w s 2 + w 2 \frac{w}{s^2+w^2} s2+w2w
余弦函数 cos ⁡ w t \cos wt coswt s s 2 + w 2 \frac{s}{s^2+w^2} s2+w2s

L变换重要定理

线性性质 L [ a f 1 ( t ) ] ± b f 2 ( t ) = a F 1 ( s ) ± b F 2 ( s ) L[af_1(t)]\pm bf_2(t)=aF_1(s)\pm bF_2(s) L[af1(t)]±bf2(t)=aF1(s)±bF2(s)
微分定理 L [ f ′ ( t ) ] = s ⋅ F ( s ) − f ( 0 ) L[f'(t)]=s·F(s)-f(0) L[f(t)]=sF(s)f(0)
积分定理 L [ ∫ f ( t ) d t ] = 1 s ⋅ F ( s ) + 1 s f ( − 1 ) ( 0 ) L[\int f(t)dt]=\frac{1}{s}·F(s)+\frac{1}{s}f^{(-1)}(0) L[f(t)dt]=s1F(s)+s1f(1)(0)
实位移定理 L [ f ( t − τ ) ] = e − τ s ⋅ F ( s ) L[f(t-\tau)]=e^{-\tau s}·F(s) L[f(tτ)]=eτsF(s)
复位移定理 L [ e A t f ( t ) ] = F ( s − A ) L[e^{At}f(t)]=F(s-A) L[eAtf(t)]=F(sA)
初值定理 lim ⁡ t → 0 f ( t ) = lim ⁡ s → ∞ s ⋅ F ( s ) \lim_{t\rightarrow0}f(t)=\lim_{s\rightarrow\infty}s·F(s) limt0f(t)=limssF(s)
终值定理 lim ⁡ t → ∞ f ( t ) = lim ⁡ s → 0 s ⋅ F ( s ) \lim_{t\rightarrow\infty}f(t)=\lim_{s\rightarrow0}s·F(s) limtf(t)=lims0sF(s)

参考资料

【(新版!最清晰!去噪不炸耳!)自动控制原理 西北工业大学 卢京潮】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值