21、深入探索Keras:高级使用技巧

深入探索Keras:高级使用技巧

1. 自定义回调函数记录损失值

在训练过程中,有时我们需要详细记录每一批次的损失值,并将其可视化。以下是一个简单的自定义回调函数示例,它可以记录每一批次的损失值,并在每个epoch结束时绘制损失值的图表。

from matplotlib import pyplot as plt
import keras

class LossHistory(keras.callbacks.Callback):
    def on_train_begin(self, logs):
        self.per_batch_losses = []

    def on_batch_end(self, batch, logs):
        self.per_batch_losses.append(logs.get("loss"))

    def on_epoch_end(self, epoch, logs):
        plt.clf()
        plt.plot(range(len(self.per_batch_losses)), self.per_batch_losses,
                 label="Training loss for each batch")
        plt.xlabel(f"Batch (epoch {epoch})")
        plt.ylabel("Loss")
        plt.legend()
        plt.savefig(f"plot_at_epoch_{epoch}")
        self.per_b
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值