《Machine Learning(Tom M. Mitchell)》读书笔记——6、第五章

本文探讨了机器学习中假设评估的重要性,介绍了样本误差与真实误差的概念,并详细讨论了置信区间估计、采样理论基础等内容。此外,还涉及两种假设之间的误差差异及如何比较不同的学习算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. Introduction (about machine learning)

2. Concept Learning and the General-to-Specific Ordering

3. Decision Tree Learning

4. Artificial Neural Networks

5. Evaluating Hypotheses

6. Bayesian Learning

7. Computational Learning Theory

8. Instance-Based Learning

9. Genetic Algorithms

10. Learning Sets of Rules

11. Analytical Learning

12. Combining Inductive and Analytical Learning

13. Reinforcement Learning


5. Evaluating Hypotheses

作为理科生,概率论是基础,就不细说了!

5.1 MOTIVATION 

In many cases it is important to evaluate the performance of learned hypotheses as precisely as possible. 

5.2 ESTIMATING HYPOTHESIS ACCURAC

5.2.1 Sample Error and True Error

5.2.2 Confidence Intervals for Discrete-Valued Hypotheses

5.3 BASICS OF SAMPLING THEORY


5.3.1 Error Estimation and Estimating Binomial Proportions

5.3.2 The Binomial Distribution

5.3.3 Mean and Variance

5.3.4 Estimators, Bias, and Variance

5.3.5 Confidence Intervals

5.3.6 Two-sided and One-sided Bound

5.4 A GENERAL APPROACH FOR DERIVING CONFIDENCE INTERVALS


5.4.1 Central Limit Theorem

5.5 DIFFERENCE IN ERROR OF TWO HYPOTHESES 

5.5.1 Hypothesis Testing 

5.6 COMPARING LEARNING ALGORITHMS

5.6.1 Paired t Tests 

5.6.2 Practical Consideration


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值