Product Details
Editorial Reviews
Preface
Acknowledgements
Contents(thirteen chapters)
1. Introduction (about machine learning)
2. Concept Learning and the General-to-Specific Ordering
3. Decision Tree Learning
4. Artificial Neural Networks
5. Evaluating Hypotheses
6. Bayesian Learning
7. Computational Learning Theory
8. Instance-Based Learning
9. Genetic Algorithms
10. Learning Sets of Rules
11. Analytical Learning
12. Combining Inductive and Analytical Learning
13. Reinforcement Learning
Appendix
Notation
Indexes
Author Index
Subject Index
本文概述了机器学习领域的核心概念与技术,包括概念学习、决策树学习、人工神经网络、贝叶斯学习等十三章节,深入探讨了从基础到进阶的知识体系。
2155

被折叠的 条评论
为什么被折叠?



