基于曲线递增策略的自适应粒子群算法(CIPSO)附matlab代码

文章介绍了针对粒子群优化算法的改进策略,通过数学分析深入研究参数影响,并提出一种曲线递增策略,旨在增强算法的寻优能力和避免早熟问题。实验表明,改进后的算法在处理高维问题时表现更优,同时简化了参数调整,提高了鲁棒性。

​✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

⛄ 内容介绍

群智能算法以其动态寻优能力强,实现途径简单等特点不断成为进化算法领域的研究热点.控参的选择对算法寻优性能有着极大影响,首先从数学推导角度对粒子群参数进行深入研究,接着提出一种契合粒子本身进化公式的,且具有反向思维的曲线递增策略的改进算法.最后验证该算法具备以下两点突出优势:a)有效避免早熟问题,在处理维度灾难问题上,寻优性能更强,且具备良好的平衡全局与局部寻优性能;b)算法控参简单,可有效解决鲁棒性低且繁琐的人工调参问题.

⛄ 部分代码

%% [1]吴凡,洪思,杨冰,胡贤夫.曲线递增策略的自适应粒子群算法研究[J].计算机应用研究,2021,38(06):1653-1656+1661.

clear all 

clc

close all

SearchAgents_no=30; % Number of search agents 种群数量

Function_name='F3'; % Name of the test function that can be from F1 to F23 (Table 1,2,3 in the paper) 设定适应度函数

Max_iteration=1000; % Maximum numbef of iterations 设定最大迭代次数

% Load details of the selected benchmark function

[lb,ub,dim,fobj]=Get_Functions_details(Function_name);  %设定边界以及优化函数

%速度范围设定

Vmax = 2;

Vmin = -2;

%原始粒子群结果

[Best_pos,Best_score,PSO_curve]=PSO(SearchAgents_no,Max_iteration,lb,ub,dim,fobj,Vmax,Vmin); %开始优化

%改进粒子群结果

[Best_pos1,Best_score1,CIPSO_curve1]=CIPSO(SearchAgents_no,Max_iteration,lb,ub,dim,fobj,Vmax,Vmin); %开始优化

figure('Position',[269   240   660   290])

%Draw search space

subplot(1,2,1);

func_plot(Function_name);

title('Parameter space')

xlabel('x_1');

ylabel('x_2');

zlabel([Function_name,'( x_1 , x_2 )'])

%Draw objective space

subplot(1,2,2);

semilogy(PSO_curve,'Color','b','linewidth',1.5)

hold on

semilogy(CIPSO_curve1,'Color','r','linewidth',1.5);

title('Objective space')

xlabel('Iteration');

ylabel('Best score obtained so far');

legend('PSO','CIPSO');

axis tight

grid on

box on

display(['The best solution obtained by PSO is : ', num2str(Best_pos)]);

display(['The best optimal value of the objective funciton found by PSO is : ', num2str(Best_score)]);

        

display(['The best solution obtained by PSOSC is : ', num2str(Best_pos1)]);

display(['The best optimal value of the objective funciton found by PSOSC is : ', num2str(Best_score1)]);

⛄ 运行结果

⛄ 参考文献

[1]吴凡, 洪思, 杨冰,等. 曲线递增策略的自适应粒子群算法研究[J]. 计算机应用研究, 2021, 38(6):5.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除

❤️ 关注我领取海量matlab电子书和数学建模资料

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值