【语音识别】基于Morlet小波变换的滚动轴承故障特征提取研究附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测 雷达通信  无线传感器

信号处理 图像处理 路径规划 元胞自动机 无人机  电力系统

⛄ 内容介绍

针对轴承故障初期振动信号中的特征成分极易被噪声信号淹没而不能及时检测的问题,结合Morlet小波变换降噪的基本原理,提出一种由尺度相关能量分布确定最优尺度参数的方法,从而在该尺度下对信号滤波来提取冲击特征成分.以最小Shannon熵优化Morlet小波的形状参数,实现母小波与信号故障特征的最佳匹配;以最优Morlet小波在不同变换尺度下的小波系数绘制尺度-能量谱,利用信号故障特征能量在特定尺度范围内聚集的特性,从谱图的极值点中选择滤波效果最好的尺度参数.对轴承全寿命数据的实际应用结果表明,与信号的均方根趋势相比,该方法能够提前从信号中提取微弱故障特征并检测到轴承的外圈故障,为轴承早期故障诊断提供了一种有效途径.

⛄ 部分代码

clc;

clear;

load O-A-1.mat

channel_1=Channel_1(1:1000,:);

fs=100;

[y,f,coi] = cwt(channel_1,fs);

figure

contourf(1:1:1000,f,abs(y))

xlabel('Time')

ylabel('f/Hz')

⛄ 运行结果

⛄ 参考文献

[1]马伦, 康建设, 孟妍,等. 基于Morlet小波变换的滚动轴承早期故障特征提取研究[J]. 仪器仪表学报, 2013, 34(4):7.

⛄ 完整代码

❤️部分理论引用网络文献,若有侵权联系博主删除

❤️ 关注我领取海量matlab电子书和数学建模资料

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值