1 简介
2 部分代码
% The PCNN 1-D demo code was written by Kun Zhan
% $Revision: 1.0.0.0 $ $Date: 2016/03/25 $ 20:25:48 $
% Reference:
% K Zhan, J Shi, H Wang, Y Xie, Q Li,
% "Computational Mechanisms of
% Pulse-Coupled Neural Networks: A Comprehensive Review,"
% Archives of Computational Methods in Engineering, 2016.
clear
T = 40;
s = [0.5 0.35 0.5 0.8 0.63 0.5 0.99];
[~, n] = size(s);
Y = zeros(T+1,n); F = Y; L = F; E = F + 1; U = F;
for t = 1:T;
K = conv(Y(t,:),[0.707 1 0.707],'same');
F(t+1,:) = exp(-0.2).*F(t,:) + 0.1*K + s;
L(t+1,:) = exp(-0.5).*L(t,:) + 0.2.*K;
U(t+1,:) = F(t+1,:).*(1+0.5*L(t+1,:));
E(t+1,:) = exp(-0.2).*E(t,:) + 6.*Y(t,:);
Y(t+1,:) = double(U(t+1,:)>E(t+1,:));
end
t = [0:1:T];
c = (n+1)./2;
figure(1)
plot(t,E(:,c),'k-d',...
t,U(:,c),'b-s',...
t,F(:,c),'g*-',...
t,L(:,c),'m+-')
axis square, axis([0 40 0 15])
h = legend('$\Theta_{ij}(n)$','$U_{ij}(n)$',...
'$F_{ij}(n)$','$L_{ij}(n)$',1);
set(h,'Interpreter','latex')
title('$f=0.8,g=0.8,\Theta_{ij}(0)=1, U_{ij}(0)=0,\forall i,j$','Interpreter','latex')
xlabel('Iterative time \it{n}')
figure(2),
stem(t,Y(:,c))
axis([0 40 0 1.2])
3 仿真结果
4 参考文献
[1]马义德, 钱志柏, 史飞,等. 基于PCNN的分割图像压缩编码[J]. 2004.
博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。
部分理论引用网络文献,若有侵权联系博主删除。