【气体扩散】基于改进的遗传算法求解高斯烟羽模型模拟气体扩散含Matlab代码

本文探讨了铁路运输气体泄漏的风险,采用高斯烟羽模型进行扩散预测,并利用改进的遗传算法优化问题求解。通过部分代码实现和仿真结果,展示算法在模拟气体扩散中的应用。博主专注于Matlab仿真,涉及智能优化、神经网络等多个领域。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

​1 简介

随着化工行业的持续发展,化工气体的用量也在持续增长,而铁路承载了相当一部分的气体运输量。因此,对于气体类危险货物铁路运输危险性评估具有十分重要的意义。铁路运输的模式与公路运输有着较大的差异,由于铁路运输易燃气体通常为远距离,大运量。所以,每一辆装载有易燃气体的列车都是潜在的泄漏源,在长途运输过程中具有较高的危险性。如今,全社会对风险管控愈加重视,虽然气体泄漏事件发生概率较小,但以铁路的运输量来看,危险气体一旦泄漏,其毒性将会对运输线周围地区居民的生命财产产生严重威胁,并且危害环境。现今城市高层建筑较多,因此,当危险气体一旦发生泄漏,对其扩散高度进行仿真预测,对于建立危险气体应急预案,支持后续救援工作以及完善危险货物运输安全管理系统具有重要的现实意义。本文采样自适应遗传和粒子群算法分别对高斯烟羽模型气体扩散优化问题进行求解。

目前,国内外气象学家研究和发展了许多的大气扩散模型,其中,研究较为成熟的有以下几种:高斯模型、Sutton 模型、Pasquill-Gifford 模型和目前运用较多的重气扩散模型等。我国大气扩散模型在我国大气环境影响、环境规划、总量控制中,一般均以高斯正态模式为基础,高斯模型为第一代大气扩散模型,法规模式主要包括有风点源扩散模式、小风和静风点源扩散模式、长期平均浓度求算模式、熏烟模式、海岸熏烟模式、多源排放模式、面源模式、体源模式、尘模式和非正常排放模式等

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值