1 简介
A new bio-inspired optimization algorithm called artificial hummingbird algorithm (AHA) is proposed in this work to solve optimization problems. The AHA algorithm simulates the special flight skills and intelligent foraging strategies of hummingbirds in nature. Three kinds of flight skills utilized in foraging strategies, including axial, diagonal, and omnidirectional flights, are modeled. In addition, guided foraging, territorial foraging, and migrating foraging are implemented, and a visit table is constructed to model the memory function of hummingbirds for food sources. AHA is validated using two sets of numerical test functions, and the results are compared with those obtained from various algorithms. The comparisons demonstrate that AHA is more competitive than other meta-heuristic algorithms and determine high-quality solutions with fewer control parameters. Additionally, the performance of AHA is validated on ten challenging engineering design cases studies. The results show the superior effectiveness of AHA in terms of computational burden and solution precision compared with the existing optimization techniques in literature. The study also explores the application of AHA in hydropower operation design to further demonstrate its potential in practice.


2 部分代码
function value=parametervalue = [9.681 0.667 4.783 9.095 3.517 9.325 6.544 0.211 5.122 2.020 0.806;9.400 2.041 3.788 7.931 2.882 2.672 3.568 1.284 7.033 7.374 0.517;8.025 9.152 5.114 7.621 4.564 4.711 2.996 6.126 0.734 4.982 1.5;2.196 0.415 5.649 6.979 9.510 9.166 6.304 6.054 9.377 1.426 0.908;8.074 8.777 3.467 1.863 6.708 6.349 4.534 0.276 7.633 1.567 0.965;7.650 5.658 0.720 2.764 3.278 5.283 7.474 6.274 1.409 8.208 0.669;1.256 3.605 8.623 6.905 0.584 8.133 6.071 6.888 4.187 5.448 0.524;8.314 2.261 4.224 1.781 4.124 0.932 8.129 8.658 1.208 5.762 0.902;0.226 8.858 1.420 0.945 1.622 4.698 6.228 9.096 0.972 7.637 0.531;7.305 2.228 1.242 5.928 9.133 1.826 4.060 5.204 8.713 8.247 0.876;0.652 7.027 0.508 4.876 8.807 4.632 5.808 6.937 3.291 7.016 0.462;2.699 3.516 5.874 4.119 4.461 7.496 8.817 0.690 6.593 9.789 0.491;8.327 3.897 2.017 9.570 9.825 1.150 1.395 3.885 6.354 0.109 0.463;2.132 7.006 7.136 2.641 1.882 5.943 7.273 7.691 2.880 0.564 0.714;4.707 5.579 4.080 0.581 9.698 8.542 8.077 8.515 9.231 4.670 0.352;8.304 7.559 8.567 0.322 7.128 8.392 1.472 8.524 2.277 7.826 0.869;8.632 4.409 4.832 5.768 7.050 6.715 1.711 4.323 4.405 4.591 0.813;4.887 9.112 0.170 8.967 9.693 9.867 7.508 7.770 8.382 6.740 0.811;2.440 6.686 4.299 1.007 7.008 1.427 9.398 8.480 9.950 1.675 0.828;6.306 8.583 6.084 1.138 4.350 3.134 7.853 6.061 7.457 2.258 0.964;0.652 2.343 1.370 0.821 1.310 1.063 0.689 8.819 8.833 9.070 0.789;5.558 1.272 5.756 9.857 2.279 2.764 1.284 1.677 1.244 1.234 0.360;3.352 7.549 9.817 9.437 8.687 4.167 2.570 6.540 0.228 0.027 0.369;8.798 0.880 2.370 0.168 1.701 3.680 1.231 2.390 2.499 0.064 0.992;1.460 8.057 1.336 7.217 7.914 3.615 9.981 9.198 5.292 1.224 0.332;0.432 8.645 8.774 0.249 8.081 7.461 4.416 0.652 4.002 4.644 0.817;0.679 2.800 5.523 3.049 2.968 7.225 6.730 4.199 9.614 9.229 0.632;4.263 1.074 7.286 5.599 8.291 5.200 9.214 8.272 4.398 4.506 0.883;9.496 4.830 3.150 8.270 5.079 1.231 5.731 9.494 1.883 9.732 0.608;4.138 2.562 2.532 9.661 5.611 5.500 6.886 2.341 9.699 6.500 0.326;];
3 仿真结果

4 参考文献
[1] Wz A , Lw A , Smb C . Artificial hummingbird algorithm: A new bio-inspired optimizer with its engineering applications.
博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。
部分理论引用网络文献,若有侵权联系博主删除。
本文提出了一种模仿蜂鸟觅食行为的人工蜂鸟算法(AHA),它结合轴向、斜向和全方位飞行技巧,以及引导、领地和迁徙觅食策略。AHA通过构建食物记忆模型,展现了在数值测试函数和工程设计案例中的高效性能,超越了其他meta-heuristic算法。研究还展示了AHA在水电运营设计中的潜力,证明其在计算负担和精度上的优越性。
1455

被折叠的 条评论
为什么被折叠?



