顶刊霜冰算法!RIME-CNN-GRU-Attention系列四模型多变量时序预测

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

  1. RIME(Recurrent Inception Multi - scale Encoder)模型

    :RIME 模型采用循环 inception 结构,能够在多个时间尺度上对多变量时间序列数据进行编码。在 RIS 辅助双功能雷达和通信系统中,不同变量的变化可能具有不同的时间尺度特征。例如,雷达目标的运动速度变化可能在较长时间尺度上较为明显,而通信信道的衰落可能在较短时间尺度上频繁发生。RIME 模型通过其独特的 inception 模块,可以同时捕捉这些不同时间尺度的信息,将多变量数据编码为更具代表性的特征向量,为后续的预测提供有力支持。

  1. CNN(Convolutional Neural Network)模型

    :CNN 模型在处理多变量时序数据时,利用卷积层可以自动提取数据中的局部特征。对于雷达和通信信号数据,这些局部特征可能包括信号的特定波形模式、频率变化特征等。通过多层卷积和池化操作,CNN 能够逐渐抽象出更高级别的特征,从而更好地理解多变量数据之间的内在关系。在多变量时序预测中,CNN 提取的特征可以帮助模型准确预测未来时刻各变量的值。例如,通过对历史通信信号的卷积特征分析,预测下一时刻的信道质量,以便调整通信波束形成策略。

  1. GRU(Gated Recurrent Unit)模型

    :如前文所述,GRU 在处理时间序列数据方面具有优势。在多变量时序预测场景下,GRU 能够有效地捕捉变量之间的时间依赖关系。对于 RIS 辅助双功能雷达和通信系统,不同变量之间的相互影响在时间上具有连续性。GRU 通过其门控机制,可以选择性地记忆和遗忘过去的信息,从而更好地对未来多变量的变化进行预测。例如,在预测雷达目标的位置时,GRU 可以结合过去多个时刻的雷达信号强度、角度等变量信息,准确预测目标下一时刻的位置,为雷达波束的准确指向提供依据。

  1. Attention 机制

    :Attention 机制在 RIME - CNN - GRU - Attention 系列模型中起着关键作用。它能够让模型在处理多变量数据时,自动关注对预测结果更为重要的变量和时间步。在 RIS 辅助双功能雷达和通信系统中,不同变量在不同时刻对系统性能的影响程度不同。例如,在某些时刻,通信信道的干扰情况对通信质量的影响较大,而在其他时刻,雷达目标的突然出现可能对雷达探测性能更为关键。Attention 机制可以使模型动态地分配注意力权重,重点关注这些关键变量和时间步,从而提高多变量时序预测的准确性。

在实际应用中,这四个模型可以协同工作。首先,RIME 模型对多变量时间序列数据进行多尺度编码,然后 CNN 模型提取数据的局部特征,接着 GRU 模型捕捉时间依赖关系,最后 Attention 机制对关键信息进行加权。通过这种方式,形成一个强大的多变量时序预测框架,为 RIS 辅助双功能雷达和通信波束形成设计提供准确的未来状态预测,助力系统性能的优化。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

We consider the application of Koopman theory to nonlinear partial differential equations. We demonstrate that the observables chosen for constructing the Koopman operator are critical for en- abling an accurate approximation to the nonlinear dynamics. If such observables can be found, then the dynamic mode decomposition (DMD) algorithm can be enacted to compute a finite-dimensional approximation of the Koopman operator, including its eigenfunctions, eigenvalues and Koopman modes. We demonstrate simple rules of thumb for selecting a parsimonious set of observables that can greatly improve the approximation of the Koopman operator. Further, we show that the clear goal in selecting observables is to place the DMD eigenvalues on the imaginary axis, thus giving an objective function for observable selection. Judiciously chosen observables lead to physically interpretable spatio-temporal features of the complex system under consideration and provide a connection to manifold learning methods. Our method provides a valuable intermediate, yet inter- pretable, approximation to the Koopman operator that lies between the DMD method and the com- putationally intensive extended DMD (EDMD). We demonstrate the impact of observable selection, including kernel methods, and construction of the Koopman operator on several canonical, nonlinear PDEs: Burgers’ equation, the nonlinear Schrödinger equation, the cubic-quintic Ginzburg-Landau equation and a reaction-diffusion system. These examples serve to highlight the most pressing and critical challenge of Koopman theory: a principled way to select appropriate observables
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值