洛谷【P1119】 灾后重建

本文介绍了一个关于地震后村庄重建的问题,涉及到村庄间的道路连接情况及如何根据重建进度查询两点间最短路径的算法实现。通过Floyd算法解决村庄重建过程中不同时间点上的路径可达性和最短路径计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Background

B地区在地震过后,所有村庄都造成了一定的损毁,而这场地震却没对公路造成什么影响。但是在村庄重建好之前,所有与未重建完成的村庄的公路均无法通车。换句话说,只有连接着两个重建完成的村庄的公路才能通车,只能到达重建完成的村庄。

Description

给出B地区的村庄数N,村庄编号从0到N-1,和所有M条公路的长度,公路是双向的。并给出第i个村庄重建完成的时间t[i],你可以认为是同时开始重建并在第t[i]天重建完成,并且在当天即可通车。若t[i]为0则说明地震未对此地区造成损坏,一开始就可以通车。之后有Q个询问(x, y, t),对于每个询问你要回答在第t天,从村庄x到村庄y的最短路径长度为多少。如果无法找到从x村庄到y村庄的路径,经过若干个已重建完成的村庄,或者村庄x或村庄y在第t天仍未重建完成 ,则需要返回-1。

Input

输入文件rebuild.in的第一行包含两个正整数N,M,表示了村庄的数目与公路的长度。
第二行包含N个非负整数t[0], t[1], …, t[N – 1],表示了每个村庄重建完成的时间,数据保证了t[0] ≤ t[1] ≤ … ≤ t[N – 1]。
接下来M行,每行3个非负整数i, j, w,w为不超过10000的正整数,表示了有一条连接村庄i与村庄j的道路,长度为w,保证i≠j,且对于任意一对村庄只会存在一条道路。
接下来一行也就是M+3行包含一个正整数Q,表示Q个询问。
接下来Q行,每行3个非负整数x, y, t,询问在第t天,从村庄x到村庄y的最短路径长度为多少,数据保证了t是不下降的。

output

输出文件rebuild.out包含Q行,对每一个询问(x, y, t)输出对应的答案,即在第t天,从村庄x到村庄y的最短路径长度为多少。如果在第t天无法找到从x村庄到y村庄的路径,经过若干个已重建完成的村庄,或者村庄x或村庄y在第t天仍未修复完成,则输出-1。

Sample Input

4 5
1 2 3 4
0 2 1
2 3 1
3 1 2
2 1 4
0 3 5
4
2 0 2
0 1 2
0 1 3
0 1 4

Sample Output

-1
-1
5
4

Hint

对于30%的数据,有N≤50;
对于30%的数据,有t[i] = 0,其中有20%的数据有t[i] = 0且N>50;
对于50%的数据,有Q≤100;
对于100%的数据,有N≤200,M≤N*(N-1)/2,Q≤50000,所有输入数据涉及整数均不超过100000。

Key To Problem

数据保证了t[0] ≤ t[1] ≤ … ≤ t[N – 1]
因为没有看到这句话所以t了无数次这种事我会乱说T_T?!
那么就是一道floyed的题了,因为询问的t也是单调递增的,所以可以在线处理,没什么好说的,直接看代码吧。

Code

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 210
#define inf 0x3f3f3f3f
using namespace std;
int n,m,q;
int t[N];
int map[N][N];

int main()
{
    memset(map,0x3f,sizeof(map));
    cin>>n>>m;
    for (int i = 0; i < n; ++i)
        scanf("%d",&t[i]);
    t[n]=inf;
    for (int i = 0; i < m; ++i)
    {
        int x,y,z;
        scanf("%d%d%d",&x,&y,&z);
        map[x][y]=z;
        map[y][x]=z;
    }
    cin>>q;
    int u=0;
    for (int i = 0; i < q; ++i)
    {
        int x,y,z;
        scanf("%d%d%d",&x,&y,&z);
        while(t[u]<=z)
        {
            for(int i=0;i<n;i++)
                for(int j=0;j<n;j++)
                    map[i][j]=min(map[i][j],map[i][u]+map[u][j]);
            u++;
        }
        if(t[x]>z||t[y]>z||map[x][y]==inf)
            puts("-1");
        else
            printf("%d\n",map[x][y]);
    }
    return 0;
}
### 问题解析 P1119 重建(Luogu)上的一个经典图论题目,其核心问题是:在一个带权图中,某些节点在特定时间点才会开放,要求在给定的时间内找出两个节点之间的最短路径,前提是这些节点必须已经开放。 Dijkstra算法非常适合解决单源最短路径问题,尤其是在边权非负的情况下。然而,由于本题涉及动态开放的节点,需要对原始Dijkstra算法进行适当调整,以确保在某一时刻查询时,只考虑那些已经开放的节点。 --- ### 解决方案设计 #### 核心思想 - 每次查询是在某个时间节点之后进行的,因此只有在该时间节点之前开放的节点才能被访问。 - 在处理查询前,将所有开放时间小于等于当前查询时间的节点及其边加入图中,然后运行Dijkstra算法[^1]。 - 可以采用预处理的方式逐步构建图,并根据每个查询的时间顺序动态更新图的状态。 --- ### C++ 实现示例 ```cpp #include <iostream> #include <vector> #include <queue> #include <cstring> #include <algorithm> using namespace std; const int MAXN = 105; const int INF = 0x3f3f3f3f; int n, m, q; int open_time[MAXN]; // 每个节点开放的时间 vector<pair<int, int>> adj[MAXN]; // 邻接表:adj[u] 存储 (v, weight) bool visited[MAXN]; int dist[MAXN]; // Dijkstra算法函数,仅考虑开放时间 <= current_time 的节点 void dijkstra(int start, int current_time) { priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> pq; fill(dist, dist + n, INF); fill(visited, visited + n, false); if (open_time[start] > current_time) return; // 起点未开放 dist[start] = 0; pq.push({0, start}); while (!pq.empty()) { int u = pq.top().second; pq.pop(); if (visited[u]) continue; visited[u] = true; for (auto edge : adj[u]) { int v = edge.first; int w = edge.second; if (open_time[v] > current_time) continue; // 节点v未开放 if (dist[v] > dist[u] + w) { dist[v] = dist[u] + w; pq.push({dist[v], v}); } } } } int main() { cin >> n >> m >> q; for (int i = 0; i < n; ++i) { cin >> open_time[i]; } for (int i = 0; i < m; ++i) { int u, v, w; cin >> u >> v >> w; adj[u].push_back({v, w}); adj[v].push_back({u, w}); // 无向图 } while (q--) { int x, y, t; cin >> x >> y >> t; dijkstra(x, t); if (dist[y] == INF || open_time[y] > t) { cout << -1 << endl; } else { cout << dist[y] << endl; } } return 0; } ``` --- ### 关键实现说明 1. **节点开放判断** 每次运行Dijkstra算法前,检查节点是否在当前时间已开放,未开放的节点不参与计算[^2]。 2. **优先队列优化** 使用`priority_queue`实现最小堆,提高查找最近未访问节点的效率。 3. **动态图构建** 图的邻接表在初始化时就加载了全部边,但在每次Dijkstra执行时通过条件过滤掉尚未开放的节点。 4. **输出结果判断** 若目标节点未开放或不可达,则输出 `-1`。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值