POJ 1821 Fence

本文探讨了一种解决最大化团队工薪收入问题的算法优化策略,通过使用单调队列和动态规划方法,有效地分配工作量给每位工人,确保总收入最大化。详细介绍了输入输出格式、样例输入及输出,并提供了核心算法实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Fence

Time Limit: 1000ms
Memory Limit: 30000KB
This problem will be judged on  PKU. Original ID: 1821
64-bit integer IO format: %lld      Java class name: Main
 
A team of k (1 <= K <= 100) workers should paint a fence which contains N (1 <= N <= 16 000) planks numbered from 1 to N from left to right. Each worker i (1 <= i <= K) should sit in front of the plank Si and he may paint only a compact interval (this means that the planks from the interval should be consecutive). This interval should contain the Si plank. Also a worker should not paint more than Li planks and for each painted plank he should receive Pi $ (1 <= Pi <= 10 000). A plank should be painted by no more than one worker. All the numbers Si should be distinct. 

Being the team's leader you want to determine for each worker the interval that he should paint, knowing that the total income should be maximal. The total income represents the sum of the workers personal income. 

Write a program that determines the total maximal income obtained by the K workers. 
 

Input

The input contains: 
Input 

N K 
L1 P1 S1 
L2 P2 S2 
... 
LK PK SK 

Semnification 

N -the number of the planks; K ? the number of the workers 
Li -the maximal number of planks that can be painted by worker i 
Pi -the sum received by worker i for a painted plank 
Si -the plank in front of which sits the worker i 
 

Output

The output contains a single integer, the total maximal income.
 

Sample Input

8 4
3 2 2
3 2 3
3 3 5
1 1 7 

Sample Output

17

Hint

Explanation of the sample: 

the worker 1 paints the interval [1, 2]; 

the worker 2 paints the interval [3, 4]; 

the worker 3 paints the interval [5, 7]; 

the worker 4 does not paint any plank 
 

Source

 
解题:单调队列优化dp
 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cstring>
 4 #include <algorithm>
 5 using namespace std;
 6 const int maxn = 20100;
 7 struct Worker{
 8     int L,S,P;
 9     bool operator<(const Worker &rhs) const{
10         return S < rhs.S;
11     }
12 }a[maxn];
13 int n,m,L[maxn],R[maxn],dp[110][maxn],q[maxn];
14 
15 int main(){
16     while(~scanf("%d%d",&n,&m)){
17         for(int i = 1; i <= m; ++i)
18             scanf("%d%d%d",&a[i].L,&a[i].P,&a[i].S);
19         sort(a + 1, a + m + 1);
20         for(int i = 1; i <= m; ++i){
21             L[i] = max(0,a[i].S - a[i].L);
22             R[i] = min(n,a[i].S + a[i].L - 1);
23         }
24         for(int i = 1; i <= m; ++i){
25             for(int j = 0; j <= R[i]; ++j)
26                 dp[i][j] = dp[i-1][j];
27             int hd = 0,tl = 0;
28             for(int j = L[i]; j < a[i].S; ++j){
29                 while(hd < tl && dp[i-1][j] - j*a[i].P >= dp[i-1][q[tl-1]] - q[tl-1]*a[i].P) --tl;
30                 q[tl++] = j;
31             }
32             for(int j = a[i].S; j <= R[i]; ++j){
33                 while(hd < tl && j - q[hd] > a[i].L) ++hd;
34                 dp[i][j] = max(dp[i-1][j],dp[i][j-1]);
35                 dp[i][j] = max(dp[i][j],dp[i-1][q[hd]] + (j - q[hd])*a[i].P);
36             }
37             for(int j = R[i] + 1; j <= n; ++j)
38                 dp[i][j] = max(dp[i-1][j],dp[i][j-1]);
39         }
40         int ret = 0;
41         for(int i = 1; i <= n; ++i)
42             ret = max(ret,dp[m][i]);
43         printf("%d\n",ret);
44     }
45     return 0;
46 }
View Code

 

转载于:https://www.cnblogs.com/crackpotisback/p/4812744.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值