tensorflow 入门经典实例

TensorFlow变量初始化与随机数生成
本文介绍如何使用TensorFlow进行变量初始化,并通过`tf.truncated_normal`和`tf.random_uniform`生成指定形状的张量,其中元素分别服从截断正态分布和均匀分布。
部署运行你感兴趣的模型镜像
import tensorflow as tf

#发起会话
sess = tf.Session()
#两行都可以执行 具体意思见下方注释
A = tf.Variable(tf.truncated_normal([2,3],0,1,dtype=tf.float32,seed=3))
#A = tf.Variable(tf.random_uniform([3,4], 1, 10))
#变量初始化
sess.run(A.initializer)
#输出 
print(sess.run(A))



[[-0.85811085 -0.19662298  0.13895045]
 [-1.22127676 -0.20793143 -1.77827966]]


#tf.truncated_normal(shape变量形状比如几乘几的矩阵, mean=0.0均值即或期望, stddev=1.0标准差, 
# dtype=tf.float32数值类型, seed=个人理解线性同余数产生随机数的种子,, name=None个人认为这句话没有意义)
# 返回一个tensor其中的元素服从截断正态分布


#11、tf.random_uniform(shape变量形状比如几乘几的矩阵,minval=0最小值,maxval=None最大值,
#dtype=tf.float32数值类型,seed=None个人理解线性同余数产生随机数的种子,name=None个人认为这句话没有意义)
#返回一个形状为shape的tensor,其中的元素服从minval和maxval之间的均匀分【minval,maxval】

您可能感兴趣的与本文相关的镜像

TensorFlow-v2.15

TensorFlow-v2.15

TensorFlow

TensorFlow 是由Google Brain 团队开发的开源机器学习框架,广泛应用于深度学习研究和生产环境。 它提供了一个灵活的平台,用于构建和训练各种机器学习模型

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值