之前写过一篇blog叫做机器学习实战笔记之非均衡分类问题:http://blog.youkuaiyun.com/lu597203933/article/details/38666699其中对Precision和Recall及ROC都有所讲解,其中区别在于Precision,Recall, F-score, MAP主要用于信息检索,而ROC曲线及其度量指标AUC主要用于分类和识别,ROC的详细介绍见上面的blog,这里的Precision、Recall和上篇blog的计算结果其实是一样的,只是这里从检索的角度进行理解。
一:Precision, Recall, F-score
信息检索、分类、识别、翻译等领域两个最基本指标是召回率(Recall Rate)和准确率(Precision Rate------注意统计学习方法中precesion称为精确率,而准确率为accuracy 是分类正确的样本除以总样本的个数。),召回率也叫查全率,准确率也