CMC、mAP解析:图像检索领域评价指标

本文介绍了CMC(累计匹配特征)和mAP(均值平均精度)在计算机视觉和信息检索中的作用,CMC用于评估闭集中排名的正确率,而mAP是AP的平均值,衡量检索系统的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. CMC: Cumulative Matching Characteristics 累计匹配特征

CMC是一种计算 top-n 的评价指标,主要用来评估闭集中rank-n的正确率。
下面举例说明:
在双模态特征匹配中。底库 Gallery 中有10条数据(label分别为1,2,3,4···10),现在来了一个待查询 query的数据(label = 1)。通过模型提取特征并计算相似度以后,如果和Gallery中的数据按照相似度从高到低进行排序后,得到的识别结果是:

  1. {1,2,3,4,5···,10}, 因为第一个就已经匹配上了,所以说rank-1 = 100%
  2. {2,1,3,4,5···,10}, 因为第一个计算出来的label是2,没有匹配上,因此 rank-1 = 0, rank-2 = 100%,rank -5同理肯定也是100% 因为前两个已经得到了正确的结果,那么前五个中一定包含正确的结果。
  • 如果存在多条query数据时,CMC指标一般会直接 取平均 的做法

2. mAP: mean Average Precision

mAP 其实就是对AP的平均值,因为mAP是对准确率进行两次平均以后的一个评价指标,因此我们需要首先明确准确率precision、召回率 recall的概念:
在一般情况下,Precision就是指检索出来的条目有多少是正确的,而Recall则表示库中所有正确的条目,有多少被检索出来。
可以表示为以下公式:
P r e c i s i o n = 检索出来的正确信息数目 检索出来的信息总数 Precision = \frac {检索出来的正确信息数目} {检索出来的信息总数} Precision=检索出来的信息总数检索出来的正确信息数目

R e c a l l = 检索出来的正确信息数目 库中的信息总条数 Recall = \frac{检索出来的正确信息数目}{库中的信息总条数} Recall=库中的信息总条数检索出来的正确信息数目

  • 需要注意的是Precision和Recall都是针对某一个类别而言的。
    在信息检索领域,AP指的是不同召回率上正确率的平均值。而现在的有些检索系统为了能够快速返回结果,在计算AP时就不再考虑召回率。换句话说,如果数据库中和查询信息相关的5条信息,分别出现在查询结果中的第1、3、6、9、10位,那么这次查询的AP就是:
    A P = ( 1 1 + 2 3 + 3 6 + 4 9 + 5 10 ) 5 = 0.62 AP = \frac{(\frac{1}{1} + \frac{2}{3} + \frac{3}{6} + \frac{4}{9} + \frac{5}{10})}{5} = 0.62 AP=5(11+32+63+94+105)=0.62
    而多次查询的AP值的平均,也就是mAP,附图说明:
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值