相似图片搜索原理一(ahash—c++实现)

本文介绍了ahash(平均哈希)算法,一种用于相似图像搜索的简单方法,尤其适用于图像缩略图搜索原图。主要内容包括图像缩放、灰度化、计算均值、生成64位二进制码作为图像的ahash值,并通过汉明距离判断图像相似度。同时,提供了C++实现ahash的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ahash,全称叫做average hash,应该是phash(perceptual hash, 感知哈希)算法的一种。是基于图像内容搜索最简单的一种(search image by image),因此也有很多的局限性。主要用于由图像的缩略图搜原图,对于图像的旋转、平移、对比度和微变形等都无能为力,所以很局限。此次讲解主要分为两个部分,理论部分主要参考是网上的资料,最核心的应该是自己的c++代码实现。

 

理论部分:

理论部分主要包括以下几个步骤:

<1> 图像缩放—将图像缩放到8*8大小

<2>灰度化—对8*8大小的图像进行灰度化

<3>计算均值—计算这8*8大小图片中64个像素的均值

<4>得到8*8图像的ahash8*8的像素值中大于均值的则用1表示,小于的用0表示,这样就得到一个64位二进制码作为该图像的ahash值。

<5>计算两幅图像ahash值的汉明距离,距离越小,表明两幅图像越相似;距离越大,表明两幅图像距离越大。

 

以下来自阮一峰blog的简介:http://www.ruanyifeng.com/blog/2011/07/principle_of_similar_image_search.html?20150415102912

 

上个月,Google"相似图片搜索"正式放上了首页。

你可以用一张图片,搜索互联网上所有与它相似的图片。点击搜索框中照相机的图标。


一个对话框会出现。

智能网联汽车的安全员高级考试涉及多个方面的专业知识,包括但不限于自动驾驶技术原理、车辆传感器融合、网络安全防护以及法律法规等内容。以下是针对该主题的些核心知识点解析: ### 关于智能网联车安全员高级考试的核心内容 #### 1. 自动驾驶分级标准 国际自动机工程师学会(SAE International)定义了六个级别的自动驾驶等级,从L0到L5[^1]。其中,L3及以上级别需要安全员具备更高的应急处理能力。 #### 2. 车辆感知系统的组成与功能 智能网联车通常配备多种传感器,如激光雷达、毫米波雷达、摄像头和超声波传感器等。这些设备协同工作以实现环境感知、障碍物检测等功能[^2]。 #### 3. 数据通信与网络安全 智能网联车依赖V2X(Vehicle-to-Everything)技术进行数据交换,在此过程中需防范潜在的网络攻击风险,例如中间人攻击或恶意软件入侵[^3]。 #### 4. 法律法规要求 不同国家和地区对于无人驾驶测试及运营有着严格的规定,考生应熟悉当地交通法典中有关自动化驾驶部分的具体条款[^4]。 ```python # 示例代码:模拟简单决策逻辑 def decide_action(sensor_data): if sensor_data['obstacle'] and not sensor_data['emergency']: return 'slow_down' elif sensor_data['pedestrian_crossing']: return 'stop_and_yield' else: return 'continue_driving' example_input = {'obstacle': True, 'emergency': False, 'pedestrian_crossing': False} action = decide_action(example_input) print(f"Action to take: {action}") ``` 需要注意的是,“橙点同学”作为特定平台上的学习资源名称,并不提供官方认证的标准答案集;建议通过正规渠道获取教材并参加培训课程来准备此类资格认证考试。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值