2025-3-10算法打卡

一,试题 B:类斐波那契循环数

1.题目描述:

2.实例:

3.思路:

优化了昨天的算法,省略了import部分

4:代码:

package cn.蓝桥杯.十五届;

public class B {

    // 检查一个数是否为类斐波那契循环数
    public static boolean isFibonacciLikeCyclicNumber(int num) {
        String numStr = String.valueOf(num);
        int n = numStr.length();
        // 创建一个数组来存储类斐波那契数列
        int[] sequence = new int[n + 1];
        //n+1是为了储存生成的下一个斐波那契数
        // 初始化数列的前 n 个数
        for (int i = 0; i < n; i++) {
            sequence[i] = numStr.charAt(i) - '0';
        }
        int index = n;
        //指数
        while (true) {
            int sum = 0;
            // 计算下一个数,即前 n 个数的和
            for (int i = index - n; i < index; i++) {
                sum += sequence[i];
            }
            // 如果和超过了 10^7,停止计算
            if (sum > 10000000) {
                break;
            }
            sequence[index] = sum;
            // 如果当前计算出的数等于原数,则该数是类斐波那契循环数
            if (sum == num) {
                return true;
            }
            index++;
            // 扩展数组以容纳更多的数
            if (index >= sequence.length) {
                int[] newSequence = new int[sequence.length * 2];
                System.arraycopy(sequence, 0, newSequence, 0, sequence.length);
                sequence = newSequence;
            }
        }
        return false;
    }

    public static void main(String[] args) {
        int maxCyclicNumber = 0;
        // 从 10^7 开始递减检查每个数
        for (int i = 10000000; i >= 0; i--) {
            if (isFibonacciLikeCyclicNumber(i)) {
                maxCyclicNumber = i;
                break;
            }
        }
        System.out.println("在 0 至 10^7 中,最大的类斐波那契循环数是: " + maxCyclicNumber);
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值