leetcode 414. Third Maximum Number (第三个最大值)

本文介绍了一种在O(n)时间复杂度内找到数组中第三大数的算法,通过维护一个长度为3的最大值数组,遍历一次数组即可得出结果。如果不存在第三大数,则返回最大数。

Given a non-empty array of integers, return the third maximum number in this array. If it does not exist, return the maximum number. The time complexity must be in O(n).

Example 1:
Input: [3, 2, 1]

Output: 1

Explanation: The third maximum is 1.
Example 2:
Input: [1, 2]

Output: 2

Explanation: The third maximum does not exist, so the maximum (2) is returned instead.
Example 3:
Input: [2, 2, 3, 1]

Output: 1

Explanation: Note that the third maximum here means the third maximum distinct number.
Both numbers with value 2 are both considered as second maximum.

给出一个非空数组,找出第三大的数,如果不存在第三大的数,就找出最大的数,而且如果有重复数字的话,重复的数字算一个,第三个最大值表示不同的数字的第三最大。要求O(n)时间复杂度。

思路:
本来打算跑三遍每次求次位的最大的数,后来发现把三个最大的数放在数组里依次比较即可,
先和最大的比,如果比最大的还大,那么就把第二第三的数更新为之前第一第二的数,相当于把保存最大数的数组向右移一位,再把最大的数保存到第一位,
同理,比最大的小之后,再和第二的数比,如果比第二个最大值大,就把第三位更新为之前的第二位,再把现在的数填到第二位。
如果比前两个最大值都小,但是比第三个大,就直接更新第三位。

填过的坑:
1.题中说如果第三个最大值不存在就反回最大值,如何判断第三个最大值不存在,就是最大值数组还保留在最小Value不变。
但是如果初始最小值设为Integer.MIN_VALUE, 就有可能出现第三个最大值本身就是Integer.MIN_VALUE的情况却被误认为不存在的case,因此初始最小值设为Long.MIN_VALUE

2.重复数字的情况,为了防止出现重复数字被保存的情况,一定要在比较第二位时,比如>第二个最大值时,同时还要满足<第一个最大值的情况

3.数组声明,最大值数组如果声明为new Long[], 后面保存int型数字时还需要转为object型,因此声明为long.

    public int thirdMax(int[] nums) {
        int result = 0;
        long[] maxV = new long[]{Long.MIN_VALUE, Long.MIN_VALUE, Long.MIN_VALUE};
        
        for (int i = 0; i < nums.length; i++) {
            if (nums[i] > maxV[0]) {
                maxV[2] = maxV[1];
                maxV[1] = maxV[0];
                maxV[0] = nums[i];
            } else if (nums[i] > maxV[1] && nums[i] < maxV[0]) {
                maxV[2] = maxV[1];
                maxV[1] = nums[i];
            } else if (nums[i] > maxV[2] && nums[i] < maxV[1]) {
                maxV[2] = nums[i];
            }
        }
        
        if (maxV[2] == Long.MIN_VALUE) {
            return (int)maxV[0];
        } else {
            return (int)maxV[2];
        }
    }
Yousef has an array a of size n . He wants to partition the array into one or more contiguous segments such that each element ai belongs to exactly one segment. A partition is called cool if, for every segment bj , all elements in bj also appear in bj+1 (if it exists). That is, every element in a segment must also be present in the segment following it. For example, if a=[1,2,2,3,1,5] , a cool partition Yousef can make is b1=[1,2] , b2=[2,3,1,5] . This is a cool partition because every element in b1 (which are 1 and 2 ) also appears in b2 . In contrast, b1=[1,2,2] , b2=[3,1,5] is not a cool partition, since 2 appears in b1 but not in b2 . Note that after partitioning the array, you do not change the order of the segments. Also, note that if an element appears several times in some segment bj , it only needs to appear at least once in bj+1 . Your task is to help Yousef by finding the maximum number of segments that make a cool partition. Input The first line of the input contains integer t (1≤t≤104 ) — the number of test cases. The first line of each test case contains an integer n (1≤n≤2⋅105 ) — the size of the array. The second line of each test case contains n integers a1,a2,…,an (1≤ai≤n ) — the elements of the array. It is guaranteed that the sum of n over all test cases doesn't exceed 2⋅105 . Output For each test case, print one integer — the maximum number of segments that make a cool partition. Example InputCopy 8 6 1 2 2 3 1 5 8 1 2 1 3 2 1 3 2 5 5 4 3 2 1 10 5 8 7 5 8 5 7 8 10 9 3 1 2 2 9 3 3 1 4 3 2 4 1 2 6 4 5 4 5 6 4 8 1 2 1 2 1 2 1 2 OutputCopy 2 3 1 3 1 3 3 4 Note The first test case is explained in the statement. We can partition it into b1=[1,2] , b2=[2,3,1,5] . It can be shown there is no other partition with more segments. In the second test case, we can partition the array into b1=[1,2] , b2=[1,3,2] , b3=[1,3,2] . The maximum number of segments is 3 . In the third test case, the only partition we can make is b1=[5,4,3,2,1]
最新发布
06-09
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蓝羽飞鸟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值