量子计算与认知模拟:探索认知奥秘的新途径
1. 量子理论在认知科学中的应用基础
在认知科学领域,量子理论正展现出独特的应用价值。人类对概念的运用具有一些特殊特征,而量子框架似乎能很好地对其进行建模。
例如,在语义处理方面,矩阵的使用为词语的不同用法提供了足够的“空间”。像“毛茸茸的猫”可以更接近“毛茸茸的狗”,但“红色的汽车”不会因为“红色”这个形容词而变得与“红色的葡萄酒”相似。这表明矩阵能够有效区分不同概念在语义上的差异。
2. 向量空间中的推理建模
另一个研究方向是利用向量空间方法来建模概念的结构。概念具有层次性这一关键特征,我们不仅会对单个实体进行分类,还会谈论实体的类型。在量子模型中,可将概念视为向量空间的子空间,并利用子空间的格结构或其投影算子进行推理。
以下是向量空间推理建模的相关工作:
| 工作内容 | 描述 |
| — | — |
| Birkhoff 和 Von Neumann(1936) | 最初提出利用子空间结构进行推理的思路 |
| Widdows 和 Peters(2003) | 将其应用于信息检索场景,基于量子逻辑描述了在文档查询中应用否定和合取的方法 |
| Coecke 等人(2010)的组合分布式模型的密度矩阵变体 | 扩展了由投影算子格形成的量子逻辑,将单词建模为正算子,通过 Löwner 序对概念的层次结构进行建模 |
| Lewis(2019) | 给出了将单词具体建模为正算子的方法,能很好地模拟人类对蕴含关系的判断 |
| Lewis(2020) | 正在进行关于否定建模的进一步研究 |
| Hedges 和 Sa
量子计算助力认知科学探索
超级会员免费看
订阅专栏 解锁全文
17

被折叠的 条评论
为什么被折叠?



