排序——计数排序(Count sort)

本文深入解析计数排序算法,一种非基于比较的排序方法,适用于一定范围内的整数排序,复杂度为O(n+k),优于比较排序算法。文章详细介绍了算法原理、过程及局限性,适合对排序算法感兴趣的读者。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

概述

计数排序是一个非基于比较的排序算法,元素从未排序状态变为已排序状态的过程,是由额外空间的辅助和元素本身的值决定的。该算法于1954年由 Harold H. Seward 提出。它的优势在于在对一定范围内的整数排序时,它的复杂度为Ο(n+k)(其中k是整数的范围),快于任何比较排序算法。当然这是一种牺牲空间换取时间的做法,而且当 O(k)>O(nlogn) 的时候其效率反而不如基于比较的排序,因为基于比较的排序的时间复杂度在理论上的下限是 O(nlogn)

算法思路

计数排序对输入的数据有附加的限制条件:

1、输入的线性表的元素属于有限偏序集 S;

2、设输入的线性表的长度为 n,|S|=k(表示集合 S 中元素的总数目为 k),则 k=O(n)。

在这两个条件下,计数排序的复杂性为O(n)。

计数排序的基本思想是对于给定的输入序列中的每一个元素 x,确定该序列中值小于 x 的元素的个数(此处并非比较各元素的大小,而是通过对元素值的计数和计数值的累加来确定)。一旦有了这个信息,就可以将 x 直接存放到最终的输出序列的正确位置上。例如,如果输入序列中只有 17 个元素的值小于 x 的值,则 x 可以直接存放在输出序列的第 18 个位置上。当然,如果有多个元素具有相同的值时,我们不能将这些元素放在输出序列的同一个位置上,因此,上述方案还要作适当的修改。

算法过程

  1. 根据待排序集合中最大元素和最小元素的差值范围,申请额外空间;
  2. 遍历待排序集合,将每一个元素出现的次数记录到元素值对应的额外空间内;
  3. 对额外空间内数据进行计算,得出每一个元素的正确位置;
  4. 将待排序集合每一个元素移动到计算得出的正确位置上。

详解算法

先假设 20 个数列为:{9, 3, 5, 4, 9, 1, 2, 7, 8,1,3, 6, 5, 3, 4, 0, 10, 9, 7, 9}。

让我们先遍历这个无序的随机数组,找出最大值为 10 和最小值为 0。这样我们对应的计数范围将是 0 ~ 10。然后每一个整数按照其值对号入座,对应数组下标的元素进行加1操作。

比如第一个整数是 9,那么数组下标为 9 的元素加 1,如下图所示。

第二个整数是 3,那么数组下标为 3 的元素加 1,如下图所示。

继续遍历数列并修改数组......。最终,数列遍历完毕时,数组的状态如下图。

数组中的每一个值,代表了数列中对应整数的出现次数。

有了这个统计结果,排序就很简单了,直接遍历数组,输出数组元素的下标值,元素的值是几,就输出几次。比如统计结果中的 1 为 2,就是数列中有 2 个 1 的意思。这样我们就得到最终排序好的结果。

0, 1, 1, 2, 3, 3, 3, 4, 4, 5, 5, 6, 7, 7, 8, 9, 9, 9, 9, 10

动画展示

算法性能

时间复杂度

O(n+k)

空间复杂度

O(k)

稳定性

稳定

特别说明

虽然计数排序看上去很强大,但是它存在两大局限性

1.当数列最大最小值差距过大时,并不适用于计数排序

比如给定 20 个随机整数,范围在 0 到 1 亿之间,此时如果使用计数排序的话,就需要创建长度为 1 亿的数组,不但严重浪费了空间,而且时间复杂度也随之升高。

2.当数列元素不是整数时,并不适用于计数排序

如果数列中的元素都是小数,比如 3.1415,或是 0.00000001 这样子,则无法创建对应的统计数组,这样显然无法进行计数排序。

正是由于这两大局限性,才使得计数排序不像快速排序、归并排序那样被人们广泛适用。

代码实现

C和C++

int * countingSort1(int arr[],int count,int max) {
    int index = 0;
    int *tmpArr = (int *)malloc(max*sizeof(int));
    int *result = (int *)malloc(max*sizeof(int));
    
    for(int k = 0;k<max;k++) {
        tmpArr[k] = 0;
    }
    
    for (int i = 0; i<count; i++) {
        tmpArr[arr[i]]++;
    }
    for (int j = 0; j<max; j++) {
        while (tmpArr[j]) {
            result[index++] = j;
            tmpArr[j]--;
        }
    }
    free(tmpArr);
    tmpArr = NULL;
    return result;
}

Java

public class CountingSort implements IArraySort {
    @Override
    public int[] sort(int[] sourceArray) throws Exception {
        // 对 arr 进行拷贝,不改变参数内容
        int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);

        int maxValue = getMaxValue(arr);

        return countingSort(arr, maxValue);
    }

    private int[] countingSort(int[] arr, int maxValue) {
        int bucketLen = maxValue + 1;
        int[] bucket = new int[bucketLen];

        for (int value : arr) {
            bucket[value]++;
        }

        int sortedIndex = 0;
        for (int j = 0; j < bucketLen; j++) {
            while (bucket[j] > 0) {
                arr[sortedIndex++] = j;
                bucket[j]--;
            }
        }
        return arr;
    }

    private int getMaxValue(int[] arr) {
        int maxValue = arr[0];
        for (int value : arr) {
            if (maxValue < value) {
                maxValue = value;
            }
        }
        return maxValue;
    }
}

Python

def countingSort(arr, maxValue):
    bucketLen = maxValue+1
    bucket = [0]*bucketLen
    sortedIndex =0
    arrLen = len(arr)
    for i in range(arrLen):
        if not bucket[arr[i]]:
            bucket[arr[i]]=0
        bucket[arr[i]]+=1
    for j in range(bucketLen):
        while bucket[j]>0:
            arr[sortedIndex] = j
            sortedIndex+=1
            bucket[j]-=1
    return arr

 

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

努力的老周

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值