SpaCy 和 Flask API 构建 Python 命名实体自动提取器

如果数据可以被结构化,那么当今可用的大量非结构化文本数据提供了丰富的信息来源。 命名实体识别 (NER)(也称为命名实体提取)是从半结构化和非结构化文本源构建知识的第一步。

只有在 NER 之后,我们才能至少揭示信息包含的内容和内容。 因此,数据科学团队将能够在语料库中看到所有人员、公司、地点等名称的结构化表示,可作为进一步分析和调查的出发点。

在 自然语言工具包(NLTK)和 SpaCy 构建 Python 命名实体识别 文章中,我们学习并实践了如何使用 NLTK 和 spaCy 构建命名实体识别器。 为了更进一步,创建一些有用的东西,本文将介绍如何使用 spaCy 开发和部署一个简单的命名实体提取器,并使用 Python 中的 Flask API 为其提供服务。

Flask API 步骤

index.html 中处理及其代码

Python 主代码 app.py 及其分解解释

测试 Flask API

源代码

详情参阅 - 亚图跨际

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值