python实体关系抽取_【关系抽取】从文本中进行关系抽取的几种不同的方法

本文探讨了关系抽取的五种方法:基于规则、弱监督、监督、模糊监督和无监督。每种方法都有其优缺点,如基于规则的方法需要大量人工规则,而无监督方法依赖于通用约束和启发式。监督方法需要标注数据,但能提供高质量的关系提取。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

关系提取是指从文本中提取语义关系,这种语义关系通常发生在两个或多个实体之间。这些关系可以是不同类型的。" Paris is in France "表示巴黎与法国之间的" is in "关系。这可以用三元组(Paris, is in, France)来表示。

信息抽取(Information Extraction, IE)是从自然语言文本中抽取结构化信息的领域。该领域用于各种NLP任务,如创建知识图、问答系统、文本摘要等。关系抽取本身就是IE的一个子域。

关系提取有五种不同的方法:

基于规则的关系提取

弱监督关系提取

监督关系提取

模糊监督关系提取

无监督的关系提取

我们将在一个较高的层次上讨论所有这些问题,并讨论每个问题的优缺点。

基于规则的关系提取

许多实体的关系可以通过手工模式的方式来提取,寻找三元组(X,α,Y),X是实体,α是实体之间的单词。比如,“Paris is in France”的例子中,α=“is”。这可以用正则表达式来提取。

句子中的命名实体

句子中的词性标记

仅查看关键字匹配也会检索出许多假阳性。我们可以通过对命名实体进行过滤,只检索(CITY、is in、COUNTRY)来缓解这种情况。我们还可以考虑词性(POS)标记来删除额外的假阳性。

这些是使用word sequence patterns的例子,因为规则指定了一个遵循文本顺序的模式。不幸的是,这些

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值