手写BundleAdjustment(尽量仅使用eigen库)

本文介绍了作者手写实现BundleAdjustment的过程,主要使用了Eigen库,涉及关键点检测、特征匹配、BRIEF描述子计算和BFmatch算法。作者通过简化实现了一个小型视觉SLAM系统的前端流程,并分享了代码链接和实验结果,展示了手写BA与标准实现的误差对比。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

手写BundleAdjustment

使用手写BA解决了PnP问题,除了读取图片、显示图片用的opencv,其他基本上只使用了eigen、sophus。

代码放在了百度云上(github还在研究怎么用,以后可能会上)
链接:https://pan.baidu.com/s/1CBJMKXGeelBSuJUuk7E1mw
提取码:br5o


一、总览

由于c++基本功及其不扎实,除了上课内容其他啥东西也没写过,因此本次实验的手写BA主要还是一个简单版的实现,在很多地方有了简化。复杂的算法逻辑等以后想加了再加,本次实验主要是搭建一个从读图、到提取特征点、到求得描述子、到匹配特征点、到求解相机位姿的一套流程框架,是对已学的视觉slam十四讲的前端内容做一个连贯的整理。
此次程序的总体框架按照高翔的十四讲上编写一个小型系统的框架来进行。如下图:
总体框架
先解释下各文件夹里面装的东西。
app:主函数BA_PnP.cpp,及它的CmakeLists.txt.
bin:可执行文件.
build:编译中间文件.
cmake_modules: 啥也没有.
data:原

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

山楂没我渣

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值